

Pascal Tutorial

i

PASCAL TUTORIAL

Simply Easy Learning by tutorialspoint.com

tutorialspoint.com

iii

 ABOUT THE TUTORIAL

Pascal Tutorial
Pascal is a procedural programming language, designed in 1968 and published in 1970 by Niklaus Wirth and named in
honor of the French mathematician and philosopher Blaise Pascal.

Pascal runs on a variety of platforms, such as Windows, Mac OS, and various versions of UNIX/Linux.

This tutorial will give you great understanding on Pascal to proceed with Delphi and other related frameworks etc.

Audience
This tutorial is designed for Software Professionals who are willing to learn Pascal Programming Language in simple and
easy steps. This tutorial will give you great understanding on Pascal Programming concepts and after completing this
tutorial you will be at intermediate level of expertise from where you can take yourself at higher level of expertise.

Prerequisites
Before proceeding with this tutorial you should have a basic understanding of software basic concepts like what is source
code, compiler, text editor and execution of programs etc. If you already have understanding on any other computer
programming language then it will be an added advantage to proceed.

Compile/Execute Pascal Programs
If you are willing to learn the Pascal programming on a Linux machine but you do not have a setup for the same, then do
not worry. The compileonline.com is available on a high end dedicated server giving you real programming experience with
a comfort of single click compilation and execution. Yes! it is absolutely free and its online.

Copyright & Disclaimer Notice

 All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from

tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form without the
written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the accuracy of
the site or its contents including this tutorial. If you discover that the tutorialspoint.com site or this tutorial
content contains some errors, please contact us at webmaster@tutorialspoint.com

http://www.compileonline.com/compile_pascal_online.php
file:///C:/Users/ZARA/Desktop/webmaster@tutorialspoint.com

iii

Table of Contents

Pascal Tutorial .. i
Audience ... i
Prerequisites ... i
Compile/Execute Pascal Programs ... i
Copyright & Disclaimer Notice ... i
Pascal Overview .. 1

Features of the Pascal Language? .. 1

Facts about Pascal .. 1

Why to use Pascal? ... 2

Environment ... 3

Installing Free Pascal on Linux ... 4

Installing Free Pascal on Mac ... 4

Installing Free Pascal on Windows ... 4

Text Editor ... 4

Program Structure .. 6

Pascal Hello World Example .. 7

Compile and Execute Pascal Program: .. 8

Basic Syntax .. 9

Functions/Procedures .. 9

Comments ... 9

Case Sensitivity ... 10

Pascal Statements ... 10

Reserved Words in Pascal... 10

Character set and Identifiers in Pascal .. 10

Data Types ... 12

Pascal Data Types: .. 12

Type Declarations: ... 13

Integer Types ... 13

Constants... 14

Enumerated types .. 14

Subrange Types .. 15

Variable Types ... 16

Basic Variables in Pascal .. 16

Variable Declaration in Pascal ... 17

Variable Initialization in Pascal .. 18

Enumerated Variables ... 19

Subrange Variables ... 19

Constants ... 21

iii

Declaring Constants .. 21

Operators ... 23

Arithmetic Operators .. 23

Relational Operators .. 24

Boolean Operators ... 26

Bit Operators .. 27

 ... 29

Operators Precedence in Pascal ... 29

Decision Making ... 31

Syntax: ... 34

Flow Diagram: .. 34

Example: .. 35

The if-then-else if-then-else Statement .. 35

Syntax: ... 35

Syntax: ... 37

Example: .. 37

Syntax: ... 38

Flow Diagram: .. 39

Example: .. 40

Syntax: ... 40

Flow Diagram: .. 41

Example: .. 41

Syntax: ... 42

Example: .. 42

Loops ... 43

while-do loop .. 44

Syntax: ... 44

Flow Diagram: .. 45

Example: .. 45

For-do LOOP ... 46

Syntax: ... 46

Example: .. 47

 ... 47

Repeat-Until Loop .. 48

Syntax: ... 48

For example, ... 48

 ... 48

Flow Diagram: .. 48

Example: .. 49

iii

Example: .. 50

Loop Control Statements: .. 52

Syntax: ... 52

Flow Diagram: .. 52

Example: .. 53

Syntax: ... 54

Flow Diagram: .. 54

Example: .. 55

Syntax: ... 56

Flow Diagram: .. 56

Example: .. 57

Functions ... 58

Subprograms ... 58

Functions ... 58

Defining a Function: ... 59

Function Declarations: ... 60

Procedure .. 62

Defining a Procedure: .. 62

Procedure Declarations: .. 63

Calling a Procedure: .. 63

Recursive Subprograms .. 64

Arguments of a Subprogram: ... 66

Variable Scope ... 70

Local Variables .. 70

Global Variables .. 71

Strings .. 74

Examples ... 74

Pascal String Functions and Procedures ... 76

Boolean .. 79

Declaration of Boolean Data Types ... 79

Example: .. 80

Arrays... 81

Declaring Arrays .. 81

Types of Array Subscript ... 82

Initializing Arrays .. 83

Accessing Array Elements ... 83

Pascal Arrays in Detail ... 84

Two-Dimensional Arrays: ... 85

Initializing Two-Dimensional Arrays: .. 85

iii

Accessing Two-Dimensional Array Elements: ... 85

Declaring Dynamic Arrays ... 86

Declaring Packed Arrays ... 88

Pointers .. 90

What Are Pointers? .. 90

Printing a Memory Address in Pascal .. 91

NILL Pointers ... 92

Pascal Pointers in Detail: ... 93

Incrementing a Pointer ... 94

Decrementing a Pointer ... 94

Pointer Comparisons ... 95

Records .. 101

Defining a Record .. 101

Accessing Fields of a Record .. 102

Records as Subprogram Arguments .. 103

Pointers to Records ... 104

The With Statement ... 106

Variants .. 108

Declaring a Variant .. 108

Example: .. 109

Sets .. 110

Defining Set Types and Variables .. 110

Set Operators .. 111

Example: .. 112

File Handling .. 114

Creating and Writing to a File .. 115

Reading from a File ... 115

Files as Subprogram Parameter .. 116

Text Files ... 117

Appending to a File .. 118

File Handling Functions ... 118

Memory Management .. 124

Allocating Memory Dynamically ... 124

Resizing and Releasing Memory ... 126

Memory Management Functions ... 127

Units ... 131

Using Built-in Units .. 131

Creating and Using a Pascal Unit .. 132

Date Time .. 135

iii

Getting the Current Date & Time: .. 135

Various Date & Time Functions: .. 136

Objects ... 142

Object Oriented Concepts:... 142

Defining Pascal Objects ... 143

Visibility of the Object Members ... 146

Constructors and Destructors for Pascal Objects: 146

Inheritance for Pascal Objects: .. 148

Classes .. 152

Defining Pascal Classes: ... 152

Visibility of the Class Members .. 155

Constructors and Destructors for Pascal Classes: 156

Inheritance: .. 157

Interfaces: .. 160

Abstract Classes: ... 160

Static Keyword: .. 161

TUTORIALSPOINT

Simply Easy Learning Page 1

Pascal Overview

This chapter describes the basic definition and concepts of Pascal.

Pascal is a general purpose high level language that was originally developed by

Nicklaus Wirth in the early 1970s. It was developed for teaching programming as a
systematic discipline and to develop reliable and efficient programs.

Pascal is Algol based language and includes many constructs of Algol. Algol-60 is a subset
of Pascal. Pascal offers several data types and programming structures. It is easy to
understand and maintain the Pascal programs.

Pascal has grown in popularity in the teaching and academics arena for various reasons:

 Easy to learn.
 Structured language.
 It produces transparent, efficient and reliable programs.
 It can be compiled on a variety of computer platforms.

Features of the Pascal Language?

Pascal has the following features:

 Pascal is a strongly typed language.
 It offers extensive error checking.
 It offers several data types like arrays, records, files and sets.
 It offers a variety of programming structures.
 It supports structured programming through functions and procedures.
 It supports object oriented programming.

Facts about Pascal

 The Pascal language was named for Blaise Pascal, French mathematician and
pioneer in computer development.

 Niklaus Wirth completed development of the original Pascal programming
language in 1970.

CHAPTER

1

TUTORIALS POINT

Simply Easy Learning Page 2

 Pascal is based on the block structured style of the Algol programming language.
 Pascal was developed as a language suitable for teaching programming as a

systematic discipline whose implementations could be both reliable and efficient.
 The ISO 7185 Pascal Standard was originally published in 1983.
 Pascal was the primary high-level language used for development in the Apple

Lisa, and in the early years of the Mac.

 In 1986, Apple Computer released the first Object Pascal implementation and in
1993, the Pascal Standards Committee published an Object-Oriented Extensions
to Pascal.

Why to use Pascal?

Pascal allows the programmers to define complex structured data types and build dynamic

and recursive data structures such as lists, trees and graphs. Pascal offers features like
records, enumerations, subranges, dynamically allocated variables with associated
pointers, and sets.

Pascal allows nested procedure definitions to any level of depth. This truly provides a
great programming environment for learning programming as a systematic discipline
based on fundamental the concepts.

Among the most amazing implementations of Pascal are:

 Skype
 Total Commander
 TeX
 Macromedia Captivate
 Apple Lisa
 Various PC Games
 Embedded Systems

TUTORIALS POINT

Simply Easy Learning Page 3

Environment

This section describes the environment setup for running Pascal

T here are several Pascal compilers and interpreters available for general use.

 Among these are:

 Turbo Pascal: provides an IDE and compiler for running Pascal programs on

CP/M, CP/M-86, DOS, Windows and Macintosh.

 Delphi: provides compilers for running Object Pascal and generates native code

for 32- and 64-bit Windows operating systems, as well as 32-bit Mac OS X and

iOS. Embarcadero is planning to build support for the Linux and Android operating

system.

 Free Pascal: it is a free compiler for running Pascal and Object Pascal programs.

Free Pascal compiler is a 32 and 64 bit Turbo Pascal and Delphi compatible Pascal

compiler for Linux, Windows, OS/2, FreeBSD, Mac OS X, DOS and several other

platforms.

 Turbo51: it is a free Pascal compiler for the 8051 family of microcontrollers, with

Turbo Pascal 7 syntax.

 Oxygene: it is an Object Pascal compiler for the .NET and Mono platforms.

 GNU Pascal (GPC): it is a Pascal compiler composed of a frontend to GNU

Compiler Collection.

We will be using Free Pascal in these tutorials. You can download Free Pascal for your

operating system from the link: Download Free Pascal

CHAPTER

2

http://www.freepascal.org/download.var

TUTORIALS POINT

Simply Easy Learning Page 4

Installing Free Pascal on Linux

The linux distribution of Free Pascal comes in three forms:
 a tar.gz version, also available as separate files.

 a .rpm (Red Hat Package Manager) version

 a .deb (Debian) version.

Installation code for the .rpm version:

Where X.Y.Z is the version number of the .rpm file, and ARCH is one of the supported
architectures (i386, x86_64 etc.).

Installation code for the Debian version(like Ubuntu):

Where XXX is the version number of the .deb file.

For details read: Free Pascal Installation Guide

Installing Free Pascal on Mac

If you use Mac OS X, the easiest way to use Free Pascal is to download the Xcode
development environment from Apple's web site and follow the simple installation

instructions. Once you have Xcode setup, you will be able to use the Free Pascal compiler.

Installing Free Pascal on Windows

For Windows, you will download the Windows installer, setup.exe. This is a usual
installation program. You need to take the following steps for installation:

 Select a directory.

 Select parts of the package you want to install.

 Optionally choose to associate the .pp or .pas extensions with the Free Pascal

IDE.

For details read: Free Pascal Installation Guide

Text Editor

This will be used to type your program. Examples of few editors include Windows Notepad,
OS Edit command, Brief, Epsilon, EMACS, and vim or vi

rpm -i fpc-X.Y.Z-N.ARCH.rpm

dpkg -i fpc-XXX.deb

http://www.freepascal.org/docs-html/user/usersu5.html
http://www.freepascal.org/docs-html/user/usersu3.html

TUTORIALS POINT

Simply Easy Learning Page 5

Name and version of text editor can vary on different operating systems. For example
Notepad will be used on Windows and vim or vi can be used on windows as well as Linux,
or Unix.

The files you create with your editor are called source files and contain program source
code. The source files for Pascal programs are typically named with the extension .pas.

Before starting your programming, make sure you have one text editor in place and you
have enough experience to write a computer program, save it in a file, compile it and
finally execute it.

TUTORIALS POINT

Simply Easy Learning Page 6

Program Structure

This section describes basic Pascal program structure so that we can take it as a reference
in upcoming chapters.

A Pascal program basically consists of the following parts:

 Program name

 Uses command

 Type declarations

 Constant declarations

 Variables declarations

 Functions declarations

 Procedures declarations

 Main program block

 Statements and Expressions within each blocks

 Comments

Every Pascal program generally have a heading statement, a declaration and an execution
part strictly in that order. Following format shows the basic syntax for a Pascal program:

 CHAPTER

3

program {name of the program}
uses {comma delimited names of libraries you use}

const {global constant declaration block}
var {global variable declaration block}
function {function declarations, if any}
{ local variables }
begin
...

end;
procedure { procedure declarations, if any}
{ local variables }
begin
...
end;
begin { main program block starts}

...
end. { the end of main program block }

TUTORIALS POINT

Simply Easy Learning Page 7

Pascal Hello World Example

Following is a simple Pascal code that would print the words "Hello, World!":

Let us look various parts of the above program:

 The first line of the program program HelloWorld; indicates the name of the
program.

 The second line of the program uses crt; is a preprocessor command which tells the
compiler to include the crt unit before going to actual compilation.

 The next lines enclosed within begin and end statements are the main program block.
Every block in Pascal is enclosed within a begin statement and an end statements.
However, the end statement indicating the end of the main program is followed by a
full stop (.) instead of semicolon (;).

 The begin statement of the main program block is where the program execution

begins.

 The lines within (*...*) will be ignored by the compiler and it has been put to add a
comment in the program.

 The statement writeln('Hello, World!'); uses the writeln function available in Pascal
which causes the message "Hello, World!" to be displayed on the screen.

 The statement readkey; allows the display to pause until the user presses a key. It is
part of the crt unit. A unit is like a library in Pascal.

 The last statement end. ends your program.

program HelloWorld;
uses crt;

(* Here the main program block starts *)

begin
 writeln('Hello, World!');
 readkey;
end.

TUTORIALS POINT

Simply Easy Learning Page 8

Compile and Execute Pascal Program:

 Open a text editor and add the above mentioned code.

 Save the file as hello.pas

 Open a command prompt and go to the directory where you saved the file.

 Type fpc hello.pas at command prompt and press enter to compile your code.

 If there are no errors in your code the command prompt will take you to the next line
and would generate hello executable file and hello.o object file.

 Now type hello at command prompt to execute your program.

 You will be able to see "Hello World" printed on the screen and program waits till you
press any key.

Make sure that free Pascal compiler fpc is in your path and that you are running it in the
directory containing source file hello.pas.

$ fpc hello.pas

Free Pascal Compiler version 2.6.0 [2011/12/23] for x86_64
Copyright (c) 1993-2011 by Florian Klaempfl and others
Target OS: Linux for x86-64
Compiling hello.pas
Linking hello
8 lines compiled, 0.1 sec

$./hello

Hello, World!

TUTORIALS POINT

Simply Easy Learning Page 9

Basic Syntax

You have seen a basic structure of Pascal program, so it will be easy to understand other
basic building blocks of the Pascal programming language.
This section shows the basic syntax of Pascal program.

Variables

A variable definitions are put in a block beginning with a var keyword, followed by

definitions of the variables as follows:

Pascal variables are declared outside the code-body of the function which means they are

not declared within the begin and end pairs, but they are declared after the definition of
the procedure/function and before the begin keyword. For global variables, they are
defined after the program header.

Functions/Procedures

In pascal a procedure is set of instructions to be executed, with no return value and a
function is a procedure with a return value. The definition of function/procedures will be
as follows:

Comments

CHAPTER

4

var

A_Variable, B_Variable ... : Variable_Type;

Function Func_Name(params...) : Return_Value;
Procedure Proc_Name(params...);

TUTORIALS POINT

Simply Easy Learning Page 10

The multiline comments are enclosed within curly brackets and asterisks as {* ... *}.
Pascal allows single line comment enclosed within curly brackets { ... }.

Case Sensitivity

Pascal is a case non-sensitive language which mean you can write your variables,

functions and procedure in either case. Like variables A_Variable, a_variable and
A_VARIABLE have same meaning in Pascal.

Pascal Statements

Pascal programs are made of statements. Each statement specifies a definite job of the
program. These jobs could be declaration, assignment, reading data, writing data, taking
logical decisions, transferring program flow control, etc.

For example:

Reserved Words in Pascal

The statements in Pascal are designed with some specific Pascal words, which are called
the reserved words. For example, the words, program, input, output, var, real, begin,
readline, writeline and end are all reserved words. Following is a list of reserved words
available in Pascal.

and array begin case const

div do downto else end

file for function goto if

in label mod nil not

of or packed procedure program

record repeat set then to

type until Var while with

Character set and Identifiers in Pascal

{* This is a multi-line comments
 and it will span multiple lines. *}

{ This is a single line comment in pascal }

readln (a, b, c);
s := (a + b + c)/2.0;
area := sqrt(s * (s - a)*(s-b)*(s-c));

writeln(area);

TUTORIALS POINT

Simply Easy Learning Page 11

The Pascal character set consists of:

 All upper case letters (A-Z)

 All lower case letters (a-z)

 All digits (0-9)

 Special symbols - + * / := , . ;. () [] = {} ` white space

The entities in a Pascal program like variables and constants, types, functions, procedures
and records etc. has a name or identifier. An identifier is a sequence of letter and digits,
beginning with a letter. Special symbols and blanks must not be used in an identifier.

TUTORIALS POINT

Simply Easy Learning Page 12

Data Types

This section shows the data types used in a Pascal program.

D ata types of an entity indicates the meaning, constraints, possible values,

operations, functions and mode of storage associated with it.

Integer, real, Boolean and character types are referred as standard data types. Data types
can be categorized as scalar, pointer and structured data types. Examples of scalar data
types are integer, real, Boolean, character, subrange and enumerated. Structured data
types are made of the scalar types, for example, arrays, records, files and sets. We will
discuss the pointer data types later.

Pascal Data Types:

Pascal data types can be summarized as below the following diagram:

CHAPTER

5

TUTORIALS POINT

Simply Easy Learning Page 13

Type Declarations:

The type declaration is used to declare the data type of an identifier. Syntax of type declaration
is:

For example, the following declaration defines the variables days and age as integer type, yes
and true as Boolean type, name and city as string type, fees and expenses as real type.

Integer Types

Following table gives you detail about standard integer types with its storage sizes and value
ranges used in Object Pascal:

Type Minimum Maximum Format

Integer -2147483648 2147483647 signed 32-bit

Cardinal 0 4294967295 unsigned 32-bit

Shortint -128 127 signed 8-bit

Smallint -32768 32767 signed 16-bit

Longint -2147483648 2147483647 signed 32-bit

Int64 -2^63 2^63 - 1 signed 64-bit

Byte 0 255 unsigned 8-bit

Word 0 65535 unsigned 16-bit

Longword 0 4294967295 unsigned 32-bit

type-identifier-1, type-identfier-2 = type-specifier;

type

days, age = integer;
yes, true = boolean;
name, city = string;
fees, expenses = real;

TUTORIALS POINT

Simply Easy Learning Page 14

Constants

Use of constants makes a program more readable and helps to keep special quantities at

one place in the beginning of the program. Pascal allows numerical, logical, string and
character constants. Constants can be declared in the declaration part of the program by
specifying the const declaration.

 Syntax of constant type declaration is follows:

Following are some examples of constant declarations:

All constant declarations must be given before the variable declaration.

Enumerated types

Enumerated data types are user-defined data types. They allow values to be specified in a
list. Only assignment operators and relational operators are permitted on enumerated
data type. Enumerated data types can be declared as follows:

Following are some examples of enumerated type declarations:

The order in which the items are listed in the domain of an enumerated type, defines the
order of the items. For example, in the enumerated type SUMMER, April comes before
May; May comes before June, and so on. The domain of enumerated type identifiers
cannot consist of numeric or character constants.

const

Identifier = contant_value;

VELOCITY_LIGHT = 3.0E=10;
PIE = 3.141592;
NAME = 'Stuart Little';
CHOICE = yes;

OPERATOR = '+';

type
enum-identifier = (item1, item2, item3, ...)

type
SUMMER = (April, May, June, July, September);
COLORS = (Red, Green, Blue, Yellow, Magenta, Cyan, Black, White);
TRANSPORT = (Bus, Train, Airplane, Ship);

TUTORIALS POINT

Simply Easy Learning Page 15

Subrange Types

Subrange types allow a variable to assume values that lie within a certain range. For

example, if the age of voters should lie between 18 to 100 years, a variable named age
could be declared as:

We will look at variable declaration in details in the next section. You can also define a

subrange type using the type declaration. Syntax for declaring a subrange type is as
follows:

Following are some examples of subrange type declarations:

Subrange types can be created from a subset of an already defined enumerated type,
For example:

var
age: 18 ... 1000;

type

subrange-identifier = lower-limit ... upper-limit;

const
P = 18;
Q = 90;
type
Number = 1 ... 100;
Value = P ... Q;

type
months = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);
Summer = Apr ... Aug;
Winter = Oct ... Dec;

TUTORIALS POINT

Simply Easy Learning Page 16

Variable Types

This section shows the variable types used in a Pascal program.

A variable is nothing but a name given to a storage area that our programs can

manipulate. Each variable in Pascal has a specific type, which determines the size and
layout of the variable's memory; the range of values that can be stored within that
memory; and the set of operations that can be applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore character.
It must begin with either a letter or an underscore. Pascal is not case-sensitive, so
uppercase and lowercase letters mean same here. Based on the basic types explained in
previous chapter, there will be following basic variable types:

Basic Variables in Pascal

Type Description

Character Typically a single octet (one byte). This is an
integer type.

Integer The most natural size of integer for the
machine.

Real A single-precision floating point value.

Boolean Specifies true or false logical values. This is
also an integer type.

Enumerated Specifies a user-defined list.

Subrange Represents variables whose values lie within
a range.

String Stores an array of characters.

CHAPTER

6

TUTORIALS POINT

Simply Easy Learning Page 17

Pascal programming language also allows defining various other types of variables which
we will cover in subsequent chapters like Pointer, Array, Records, Sets, and Files etc. For
this chapter, let us study only basic variable types.

Variable Declaration in Pascal

All variables must be declared before we use them in Pascal program. All variable
declarations are followed by the var keyword. A declaration specifies a list of variables,
followed by a colon (:) and the type. Syntax of variable declaration is:

Here, type must be a valid Pascal data type including character, integer, real, boolean, or
any user defined data type etc., and variable_list may consist of one or more identifier
names separated by commas. Some valid variable declarations are shown here:

In the previous tutorial, we have discussed that Pascal allows declaring a type. A type can
be identified by a name or identifier. This type can be used to define variables of that
type. For example:

Now, the types so defined can be used in variable declarations:

Please note the difference between type declaration and var declaration. Type declaration
indicates the category or class of the types such as integer, real etc., whereas the variable
specification indicates the type of values a variable may take. You can compare type
declaration in Pascal with typedef in C. Most importantly, the variable name refers to the
memory location where the value of the variable is going to be stored. This is not so with
the type declaration.

var
variable_list : type;

var
age, weekdays : integer;
taxrate, net_income: real;
choice, isready: boolean;
initials, grade: char;
name, surname : string;

type
days, age = integer;

yes, true = boolean;
fees, expenses = real;

var
weekdays, holidays : days;
choice: yes;
student_name, emp_name : name;
capital: city;

cost: expenses;

TUTORIALS POINT

Simply Easy Learning Page 18

Variable Initialization in Pascal

Variables are assigned a value with a colon and the equal sign, followed by a constant
expression. The general form of assigning a value is:

By default, variables in Pascal are not initialized with zero. They may contain rubbish

values. So it is a better practice to initialize variables in a program. Variables can be
initialized (assigned an initial value) in their declaration. The initialization is followed by
the var keyword and the syntax of initialization is as follows:

Some examples are:

Let us look at an example which makes use of various types of variables discussed so far:

When the above code is compiled and executed, it produces following result:

variable_name := value;

var
variable_name : type = value;

age: integer = 15;

taxrate: real = 0.5;
grade: char = 'A';
name: string = 'John Smith';

program Greetings;

const
message = ' Welcome to the world of Pascal ';

type
name = string;
var
firstname, surname: name;
begin

 writeln('Please enter your first name: ');
 readln(firstname);
 writeln('Please enter your surname: ');
 readln(surname);
 writeln;
 writeln(message, ' ', firstname, ' ', surname);

end.

Please enter your first name:
John

Please enter your surname:
Smith
Welcome to the world of Pascal John Smith

TUTORIALS POINT

Simply Easy Learning Page 19

Enumerated Variables

You have seen how to use simple variable types like integer, real and boolean. Now let's see
variables of enumerated type which can be defined as:

When you have declared an enumerated type, you can declare variables of that type. For
example:

The following example illustrates the concept:

When the above code is compiled and executed, it produces following result:

Subrange Variables

Subrange variables are declared as:

Examples of subrange variables are:

The following program illustrates the concept:

var
var1, var2, ... : enum-identifier;

type

months = (January, February, March, April, May, June, July, August,
September, October, November, December);
Var

m: months;
...
M := January;

program exEnumeration;
type
beverage = (coffee, tea, milk, water, coke, limejuice);
var
drink:beverage;
begin

 writeln('Which drink do you want?');

 writeln('You have ', sizeof(drink), ' choices');
end.

Which drink do you want?
You have 4 choices

var
subrange-name : lowerlim ... uperlim;

var
marks: 1 ... 100;
grade: 'A' ... 'E';
age: 1 ... 25;

TUTORIALS POINT

Simply Easy Learning Page 20

The following program illustrates the concept:

When the above code is compiled and executed, it produces following result:

program exSubrange;

var
marks: 1 .. 100;
grade: 'A' .. 'E';
begin
 writeln('Enter your marks(1 - 100): ');
 readln(marks);
 writeln('Enter your grade(A - E): ');

 readln(grade);
 writeln('Marks: ' , marks, ' Grade: ', grade);
end.

var
weekdays, holidays : days;
choice: yes;
student_name, emp_name : name;

capital: city;
cost: expenses;

TUTORIALS POINT

Simply Easy Learning Page 21

Constants

This section shows the constants used in a Pascal program.

A constant is an entity that remains unchanged during program execution. Pascal

allows only constants of the following types to be declared:

 Ordinal types
 Set types
 Pointer types (but the only allowed value is Nil).
 Real types
 Char
 String

Declaring Constants

Syntax for declaring constants is as follows:

The following table provides examples of some valid constant declarations:

Constant Type Examples

Ordinal(Integer)type constant valid_age = 21;

Set type constant Vowels = set of (A,E,I,O,U);

Pointer type constant P = NIL;

Real type constant e=2.7182818;
velocity_light = 3.0E+10;

Character type constant Operator = '+';

CHAPTER

7

const
identifier = constant_value;

TUTORIALS POINT

Simply Easy Learning Page 22

String type constant president = 'Johnny Depp';

The following example illustrates the concept:

When the above code is compiled and executed, it produces following result:

Observe the formatting in the output statement of the program. The variable c is to be
formatted with total number of digits 7 and 2 digits after the decimal sign. Pascal allows
such output formatting with the numerical variables.

program const_circle (input,output);
const
PI = 3.141592654;
var

r, d, c : real; {variable declaration: radius, dia, circumference}
begin
 writeln('Enter the radius of the circle');
 readln(r);
 d := 2 * r;
 c := PI * d;

 writeln('The circumference of the circle is ',c:7:2);

end.

Enter the radius of the circle
23

The circumference of the circle is 144.51

TUTORIALS POINT

Simply Easy Learning Page 23

Operators

This section shows the operators used in a Pascal program.

A n operator is a symbol that tells the compiler to perform specific mathematical

or logical manipulations. Pascal allows the following type of operators:

 Arithmetic operators
 Relational operators
 Boolean operators
 Bit operators
 Set operators
 String operators

Let us discuss the arithmetic, relational, Boolean and bit operators one by one.

Arithmetic Operators

Following table shows all the arithmetic operators supported by Pascal. Assume variable A
holds 10 and variable B holds 20 then:

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiply both operands A * B will give 200

div Divide numerator by de-numerator B div A will give 2

mod Modulus Operator AND remainder after an

integer division

B mod A will give 0

CHAPTER

8

TUTORIALS POINT

Simply Easy Learning Page 24

The following example illustrates the arithmetic operators:

Please note that Pascal is very strongly typed programming language, so it would give an
error if you try to store the results of a division in an integer type variable. When the
above code is compiled and executed, it produces following result:

Relational Operators

Following table shows all the relational operators supported by Pascal. Assume variable A holds
10 and variable B holds 20 then:

Operator Description Example

= Checks if the value of two operands is
equal or not, if yes then condition becomes
true.

(A = B) is not true.

<> Checks if the value of two operands is
equal or not, if values are not equal then
condition becomes true.

(A <> B) is true.

> Checks if the value of left operand is
greater than the value of right operand, if

yes then condition becomes true.

(A > B) is not true.

program calculator;

var
a,b,c : integer;
d: real;
begin
 a:=21;
 b:=10;
 c := a + b;

 writeln(' Line 1 - Value of c is ', c);
 c := a - b;
 writeln('Line 2 - Value of c is ', c);
 c := a * b;
 writeln('Line 3 - Value of c is ', c);

 d := a / b;

 writeln('Line 4 - Value of d is ', d:3:2);
 c := a mod b;
 writeln('Line 5 - Value of c is ' , c);
 c := a div b;
 writeln('Line 6 - Value of c is ', c);
end.

Line 1 - Value of c is 31

Line 2 - Value of c is 11
Line 3 - Value of c is 210

Line 4 - Value of d is 2.10
Line 5 - Value of c is 1
Line 6 - Value of c is 2

TUTORIALS POINT

Simply Easy Learning Page 25

< Checks if the value of left operand is less
than the value of right operand, if yes then
condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is
greater than or equal to the value of right
operand, if yes then condition becomes
true.

(A >= B) is not true.

<= Checks if the value of left operand is less
than or equal to the value of right operand,
if yes then condition becomes true.

(A <= B) is true.

Try following example to understand all the relational operators available in Pascal
programming language:

When the above code is compiled and executed, it produces following result:

program showRelations;
var
a, b: integer;
begin

 a := 21;
 b := 10;
 if a = b then
 writeln('Line 1 - a is equal to b')
 else
 writeln('Line 1 - a is not equal to b');
 if a < b then

 writeln('Line 2 - a is less than b')
 else

 writeln('Line 2 - a is not less than b');
 if a > b then
 writeln('Line 3 - a is greater than b')
 else
 writeln('Line 3 - a is greater than b');

 (* Lets change value of a and b *)
 a := 5;
 b := 20;

if a <= b then
 writeln('Line 4 - a is either less than or equal to b');
 if (b >= a) then

 writeln('Line 5 - b is either greater than or equal to ');

end.

Line 1 - a is not equal to b
Line 2 - a is not less than b
Line 3 - a is greater than b
Line 4 - a is either less than or equal to b

Line 5 - b is either greater than or equal to b

TUTORIALS POINT

Simply Easy Learning Page 26

Boolean Operators

Following table shows all the Boolean operators supported by Pascal language. All these

operators work on Boolean operands and produces Boolean results. Assume variable A
holds true and variable B holds false then:

Operator Description Example

and Called Boolean AND operator. If both the

operands are true then condition becomes
true.

A and B) is false.

and then It is similar to the AND operator, however,
it guarantees the order in which the
compiler evaluates the logical expression.
Left to right and the right operands are
evaluated only when necessary

(A and then B) is false.

or Called Boolean OR Operator. If any of the

two operands is true then condition
becomes true.

(A or B) is true.

or else It is similar to Boolean OR, however, it
guarantees the order in which the compiler
evaluates the logical expression. Left to
right and the right operands are evaluated
only when necessary

(A or else B) is true.

<= Called Boolean NOT Operator. Used to
reverse the logical state of its operand. If a
condition is true then Logical NOT operator
will make it false.

not (A and B) is true.

The following example illustrates the concept:

program beLogical;
var
a, b: boolean;

begin
 a := true;
 b := false;

 if (a and b) then

 writeln('Line 1 - Condition is true')
 else

 writeln('Line 1 - Condition is not true');
 if (a or b) then
 writeln('Line 2 - Condition is true');

 (* lets change the value of a and b *)
 a := false;
 b := true;

 if (a and b) then
 writeln('Line 3 - Condition is true')
 else
 writeln('Line 3 - Condition is not true');
 if not (a and b) then
 writeln('Line 4 - Condition is true');

end.

TUTORIALS POINT

Simply Easy Learning Page 27

When the above code is compiled and executed, it produces following result:

Bit Operators

Bitwise operators work on bits and perform bit by bit operation. All these operators work

on integer operands and produces integer results. The truth tables for bitwise and (&),
bitwise or (|), and bitwise not (~) are as follows:

p q p & q p ! q ~p ~q

0 0 0 0 1 1

0 1 0 1 1 0

1 0 1 1 0 0

1 1 0 1 0 1

Assume if A = 60; and B = 13; Now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A^B = 0011 0001

~A = 1100 0011

The Bitwise operators supported by Pascal are listed in the following table. Assume
variable A holds 60 and variable B holds 13 then:

Operator Description Example

& Binary AND Operator copies a bit to the
result if it exists in both operands.

(A & B) will give 12 which is
0000 1100

| Binary OR Operator copies a bit if it exists
in either operand.

(A | B) will give 61 which is
0011 1101

Line 1 - Condition is not true
Line 2 - Condition is true
Line 3 - Condition is not true
Line 4 - Condition is true

TUTORIALS POINT

Simply Easy Learning Page 28

! Binary OR Operator copies a bit if it exists
in either operand.

A ! B) will give 61 which is
0011 1101

~ Binary Ones Complement Operator is
unary and has the effect of 'flipping' bits.

(~A) will give -60 which is
1100 0011

<< Binary Left Shift Operator. The left
operands value is moved left by the
number of bits specified by the right
operand.

A << 2 will give 240 which is
1111 0000

>> Binary Right Shift Operator. The left
operands value is moved right by the

number of bits specified by the right
operand.

A >> 2 will give 15 which is
0000 1111

Please note that different implementations of Pascal differ in bitwise operators. Free
Pascal, the compiler we used here, however, supports the following bitwise operators:

Operators Operations

not Bitwise NOT

and Bitwise AND

or Bitwise OR

xor Bitwise exclusive OR

shl Bitwise shift left

shr Bitwise shift right

<< Bitwise shift left

>> Bitwise shift right

The following example illustrates the concept:

TUTORIALS POINT

Simply Easy Learning Page 29

When the above code is compiled and executed, it produces following result:

Operators Precedence in Pascal

Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example,
the multiplication operator has higher precedence than the addition operator.

For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher
precedence than + so it first get multiplied with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with the
lowest appear at the bottom. Within an expression, higher precedence operators will be
evaluated first.

Operators Precedence

~, not, Highest

*, /, div, mod, and, &

|, !, +, -, or,

program beBitwise;
var

a, b, c: integer;
begin
 a := 60; (* 60 = 0011 1100 *)
 b := 13; (* 13 = 0000 1101 *)
 c := 0;

 c := a and b; (* 12 = 0000 1100 *)

 writeln('Line 1 - Value of c is ', c);

 c := a or b; (* 61 = 0011 1101 *)
 writeln('Line 2 - Value of c is ', c);

 c := not a; (* -61 = 1100 0011 *)
 writeln('Line 3 - Value of c is ', c);

 c := a << 2; (* 240 = 1111 0000 *)
 writeln('Line 4 - Value of c is ', c);

 c := a >> 2; (* 15 = 0000 1111 *)
 writeln('Line 5 - Value of c is ', c);

end.

Line 1 - Value of c is 12

Line 2 - Value of c is 61

Line 3 - Value of c is -61
Line 4 - Value of c is 240
Line 5 - Value of c is 15

TUTORIALS POINT

Simply Easy Learning Page 30

=, <>, <, <=, >, >=, in

or else, and then Lowest

Try the following example to understand the operator precedence available in Pascal:

When the above code is compiled and executed, it produces following result:

program opPrecedence;
var

a, b, c, d : integer;
e: real;
begin
 a := 20;
 b := 10;

 c := 15;
 d := 5;

 e := (a + b) * c / d; (* (30 * 15) / 5 *)
 writeln('Value of (a + b) * c / d is : ', e:3:1);

 e := ((a + b) * c) / d; (* (30 * 15) / 5 *)
 writeln('Value of ((a + b) * c) / d is : ' , e:3:1);

 e := (a + b) * (c / d); (* (30) * (15/5) *)

 writeln('Value of (a + b) * (c / d) is : ', e:3:1);

 e := a + (b * c) / d; (* 20 + (150/5) *)
 writeln('Value of a + (b * c) / d is : ' , e:3:1);
end.

Value of (a + b) * c / d is : 90.0
Value of ((a + b) * c) / d is : 90.0
Value of (a + b) * (c / d) is : 90.0

Value of a + (b * c) / d is : 50.0

TUTORIALS POINT

Simply Easy Learning Page 31

Decision Making

This section shows the decision making structure found in Pascal:

D ecision making structures require that the programmer specify one or more

conditions to be evaluated or tested by the program, along with a statement or
statements to be executed if the condition is determined to be true, and optionally, other
statements to be executed if the condition is determined to be false.

Following is the general from of a typical decision making structure found in most of the
programming languages:

Pascal programming language provides following types of decision making statements.
Click the following links to check their detail.

CHAPTER

9

TUTORIALS POINT

Simply Easy Learning Page 32

Statement Description

if - then statement An if - then statement consists of a boolean expression

followed by one or more statements.

If-then-else statement An if - then statement can be followed by an optional
else statement, which executes when the boolean
expression is false.

nested if statements You can use one if or else if statement inside another if or
else if statement(s).

case statement A case statement allows a variable to be tested for
equality against a list of values.

case - else statement It is similar to the if-then-else statement. Here an else
term follows the case statement.

nested case statements You can use one case statement inside another case
statement(s).

if-then Statement

The if-then statement is the simplest form of control statement, frequently used in
decision making and changing the control flow of the program execution.

Syntax

Syntax for if-then statement is:

Where condition is a Boolean or relational condition and S is a simple or compound
statement. Example of an if-then statement is:

If the boolean expression condition evaluates to true then the block of code inside the if
statement will be executed. If boolean expression evaluates to false then the first set of
code after the end of the if statement (after the closing end;) will be executed.

Pascal assumes any non-zero and non-nill values as true and if it is either zero or nill then
it is assumed as false value.

Flow Diagram:

if condition then S

if (a <= 20) then

 c:= c+1;

TUTORIALS POINT

Simply Easy Learning Page 33

Example:

Let us try a complete example that would illustrate the concept:

When the above code is compiled and executed, it produces following result:

program ifChecking;
var
{ local variable declaration }
 a:integer;
begin
 a:= 10;
 (* check the boolean condition using if statement *)

 if(a < 20) then
 (* if condition is true then print the following *)
 writeln('a is less than 20 ');
 writeln('value of a is : ', a);
end.

a is less than 20
value of a is : 10

TUTORIALS POINT

Simply Easy Learning Page 34

if-then-else Statement

An if-then statement can be followed by an optional else statement, which executes
when the Boolean expression is false.

Syntax:

Syntax for the if-then-else statement is:

Where, S1 and S2 are different statements. Please note that the statement S1 is not
followed by a semicolon. In the if-then-else statements, when the test condition is true,
the statement S1 is executed and S2 is skipped; when the test condition is false, then S1
is bypassed and statement S2 is executed.

For example,

If the boolean expression condition evaluates to true then the if-then block of code will
be executed otherwise the else block of code will be executed.

Pascal assumes any non-zero and non-nill values as true and if it is either zero or nill then
it is assumed as false value.

Flow Diagram:

if condition then S1 else S2;

if color = red then
 writeln('You have chosen a red car')
else
 writeln('Please choose a color for your car');

TUTORIALS POINT

Simply Easy Learning Page 35

Example:

Let us try a complete example that would illustrate the concept:

When the above code is compiled and executed, it produces following result:

The if-then-else if-then-else Statement

An if-then statement can be followed by an optional else if-then-else statement, which is very
useful to test various conditions using single if-then-else if statement.

When using if-then , else if-then , else statements there are few points to keep in mind.

 An if-then statement can have zero or one else's and it must come after any else if's.

 An if-then statement can have zero to many else if's and they must come before the
else.

 Once an else if succeeds, none of the remaining else if's or else's will be tested.

 No semicolon (;) is given before the last else keyword, but all statements can be
compound statements.

Syntax:

The syntax of an if-then-else if-then-else statement in Pascal programming language is:

program ifelseChecking;
var
 { local variable definition }
 a : integer;

begin
 a := 100;
 (* check the boolean condition *)
 if(a < 20) then
 (* if condition is true then print the following *)
 writeln('a is less than 20')

 else

 (* if condition is false then print the following *)
 writeln('a is not less than 20');
 writeln('value of a is : ', a);
end.

a is not less than 20
value of a is : 100

TUTORIALS POINT

Simply Easy Learning Page 36

Example:

The following example illustrates the concept:

The following example illustrates the concept:

if(boolean_expression 1)then
 S1 (* Executes when the boolean expression 1 is true *)
else if(boolean_expression 2) then

 S2 (* Executes when the boolean expression 2 is true *)
else if(boolean_expression 3) then
 S3 (* Executes when the boolean expression 3 is true *)
else
 S4; (* executes when the none of the above condition is true *)

program ifelse_ifelseChecking;
var
 { local variable definition }
 a : integer;
begin
 a := 100;

 (* check the boolean condition *)
 if (a = 10) then
 (* if condition is true then print the following *)
 writeln('Value of a is 10')
 else if (a = 20) then
 (* if else if condition is true *)
 writeln('Value of a is 20')

 else if(a = 30) then
 (* if else if condition is true *)
 writeln('Value of a is 30')
 else
 (* if none of the conditions is true *)
 writeln('None of the values is matching');

 writeln('Exact value of a is: ', a);
end.

None of the values is matching

Exact value of a is: 100

TUTORIALS POINT

Simply Easy Learning Page 37

Nested if-then Statements

It is always legal in Pascal programming to nest if-else statements, which means you can
use one if or else if statement inside another if or else if statement(s). Pascal allows
nesting to any level, however, if depends on Pascal implementation on a particular
system.

Syntax:

The syntax for a nested if statement is as follows:

You can nest else if-then-else in the similar way as you have nested if-then statement.
Please note that, the nested if-then-else constructs gives rise to some ambiguity as to
which else statement pairs with which if statement. The rule is that the else keyword
matches the first if keyword (searching backwards) not already matched by an else
keyword.

The above syntax is equivalent to:

It is not equivalent to

Therefore if the situation demands the later construct, then you must put begin and end
keywords at the right place.

Example:

if(boolean_expression 1) then

 if(boolean_expression 2)then S1
else
 S2;

if(boolean_expression 1) then
begin
 if(boolean_expression 2)then

 S1
 else
 S2;
end;

if (boolean_expression 1) then
begin
 if exp2 then

 S1
end;
 else
 S2;

TUTORIALS POINT

Simply Easy Learning Page 38

When the above code is compiled and executed, it produces following result:

Case Statement

You have observed that if-then-else statements enable us to implement multiple
decisions in a program. This can also be achieved using the case statement in simpler
way.

Syntax:

The syntax of the case statement is:

Where, L1, L2... are case labels, or input values which could be integers, characters,

boolean or enumerated data items. S1, S2, ... are Pascal statements, each of these
statements may have one or more than one case label associated with it. The expression
is called the case selector or the case index. The case index may assume values that
correspond to the case labels.

The case statement must always have an end statement associated with it.

program nested_ifelseChecking;

var
 { local variable definition }
 a, b : integer;
begin
 a := 100;
 b:= 200;
 (* check the boolean condition *)

 if (a = 100) then
 (* if condition is true then check the following *)
 if (b = 200) then
 (* if nested if condition is true then print the following *)
 writeln('Value of a is 100 and value of b is 200');

 writeln('Exact value of a is: ', a);
 writeln('Exact value of b is: ', b);
end.

Value of a is 100 and b is 200
Exact value of a is : 100

Exact value of b is : 200

case (expression) of
 L1 : S1;
 L2: S2;
 ...
 ...
 Ln: Sn;

end;

TUTORIALS POINT

Simply Easy Learning Page 39

The following rules apply to a case statement:

 The expression used in a case statement must have an integral or enumerated
type, or be of a class type in which the class has a single conversion function to
an integral or enumerated type.

 You can have any number of case statements within a case. Each case is followed
by the value to be compared to and a colon.

 The case label for a case must be the same data type as the expression in the

case statement, and it must be a constant or a literal.

 The compiler will evaluate the case expression. If one of the case label's value

matches the value of the expression, the statement that follows this label is
executed. After that, the program continues after the final end.

 If none of the case label matches the expression value, the statement list after

the else or otherwise keyword is executed. This can be an empty statement list. If
no else part is present, and no case constant matches the expression value,
program flow continues after the final end.

 The case statements can be compound statements (i.e. a Begin ... End block).

Flow Diagram:

TUTORIALS POINT

Simply Easy Learning Page 40

Example:

The following example illustrates the concept:

When the above code is compiled and executed, it produces following result:

Case Else Statement

The case-else statement uses an else term after the case labels, just like an if-then-else
construct.

Syntax:

The syntax for the case-else statement is:

program checkCase;
var
 grade: char;
begin
 grade := 'A';

 case (grade) of
 'A' : writeln('Excellent!');
 'B', 'C': writeln('Well done');

 'D' : writeln('You passed');
 'F' : writeln('Better try again');
 end;

 writeln('Your grade is ', grade);
end.

Excellent!
Your grade is A

case (expression) of
 L1 : S1;

 L2 : S2;
 ...
 ...
 Ln: Sn;

else
 Sm;
end;

TUTORIALS POINT

Simply Easy Learning Page 41

Flow Diagram:

Example:

The following example illustrates the concept:

When the above code is compiled and executed, it produces following result:

program checkCase;
var
 grade: char;
begin

 grade := 'F';
 case (grade) of
 'A' : writeln('Excellent!');

 'B', 'C': writeln('Well done');
 'D' : writeln('You passed');
 else
 writeln('You really did not study right!');

 end;
 writeln('Your grade is ', grade);
end.

You really did not study right!

Your grade is F

TUTORIALS POINT

Simply Easy Learning Page 42

Nested Case Statements

It is possible to have a case statement as part of the statement sequence of an outer
case statement. Even if the case constants of the inner and outer case contain
common values, no conflicts will arise.

Syntax:

The syntax for a nested case statement is as follows:

Example:

The following program illustrates the concept.

When the above code is compiled and executed, it produces following result:

case (ch1) of
 'A': begin

 writeln('This A is part of outer case');
 case(ch2) of
 'A': writeln('This A is part of inner case');

 'B': (* case code *)
 ...
 end; {end of inner case}
 end; (* end of case 'A' of outer statement *)
 'B': (* case code *)
 'C': (* case code *)
 ...

end; {end of outer case}

program checknestedCase;
var

 a, b: integer;
begin
 a := 100;
 b := 200;
 case (a) of
 100: begin

 writeln('This is part of outer statement');
 case (b) of
 200: writeln('This is part of inner statement');
 end;
 end;
 end;

 writeln('Exact value of a is : ', a);

 writeln('Exact value of b is : ', b);
end.

This is part of outer switch
This is part of inner switch

Exact value of a is: 100
Exact value of b is: 200

TUTORIALS POINT

Simply Easy Learning Page 43

Loops

This section shows loop statements used in Pascal :

There may be a situation when you need to execute a block of code several number

of times. In general statements are executed sequentially: The first statement in a
function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated
execution paths.

A loop statement allows us to execute a statement or group of statements multiple times
and following is the general from of a loop statement in most of the programming
languages:

CHAPTER

10

TUTORIALS POINT

Simply Easy Learning Page 44

Pascal programming language provides the following types of loop constructs to handle
looping requirements. Click the following links to check their detail.

Loop Type Description

while-do loop Repeats a statement or group of statements until a given condition is
true. It tests the condition before executing the loop body.

for-do loop Execute a sequence of statements multiple times and abbreviates the
code that manages the loop variable.

repeat-until loop Like a while statement, except that it tests the condition at the end of
the loop body.

nested loops You can use one or more loop inside any another while, for or repeat
until loop.

while-do loop

A while-do loop statement in Pascal allows repetitive computations till some test

condition is satisfied. In other words it repeatedly executes a target statement as long as
a given condition is true.

Syntax:

The syntax of a while-do loop is:

Where condition is a Boolean or relational expression whose value would be true or false
and S is a simple statement or group of statements within BEGIN ... END block.

For example,

When the condition becomes false, program control passes to the line immediately
following the loop.

while (condition) do S;

while number>0 do
begin
 sum := sum + number;
 number := number - 2;

end;

TUTORIALS POINT

Simply Easy Learning Page 45

Flow Diagram:

Here key point of the while loop is that the loop might not ever run. When the condition is
tested and the result is false, the loop body will be skipped and the first statement after the
while loop will be executed.

Example:

When the above code is compiled and executed, it produces following result:

program whileLoop;
var
 a: integer;
begin
 a := 10;

 while a < 20 do
 begin
 writeln('value of a: ', a);
 a := a + 1;
 end;
end.

value of a: 10
value of a: 11
value of a: 12
value of a: 13

value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

TUTORIALS POINT

Simply Easy Learning Page 46

For-do LOOP

A for-do loop is a repetition control structure that allows you to efficiently write a loop
that needs to execute a specific number of times.

Syntax:

The syntax for the for-do loop in Pascal is as follows:

Where, the variable-name specifies a variable of ordinal type, called control variable or

index variable; initial_value and final_value values are values that the control variable can
take; and S is the body of the for-do loop that could be a simple statement or a group of
statements.

For example:

Here is the flow of control in a for-do loop:

 The initial step is executed first, and only once. This step allows you to declare
and initialize any loop control variables.

 Next, the condition is evaluated. If it is true, the body of the loop is executed. If it

is false, the body of the loop does not execute and flow of control jumps to the
next statement just after the for-do loop.

 After the body of the for-do loop executes, the value of the variable in increased
or decreased.

 The condition is now evaluated again. If it is true, the loop executes and the
process repeats itself (body of loop, then increment step, and then again
condition). After the condition becomes false, the for-do loop terminates.

for < variable-name > := < initial_value > to [down to] < final_value > do
 S;

for i:= 1 to 10 do writeln(i);

TUTORIALS POINT

Simply Easy Learning Page 47

Flow Diagram

Example:

program forLoop;
var
 a: integer;
begin

 for a := 10 to 20 do
 begin
 writeln('value of a: ', a);
 end;
end.

TUTORIALS POINT

Simply Easy Learning Page 48

When the above code is compiled and executed, it produces following result:

Repeat-Until Loop

Unlike for and while loops, which test the loop condition at the top of the loop, the repeat
... until loop in Pascal checks its condition at the bottom of the loop.

A repeat ... until loop is similar to a while loop, except that a repeat ... until loop is
guaranteed to execute at least one time.

Syntax:

For example,

Notice that the conditional expression appears at the end of the loop, so the statement(s)
in the loop execute once before the condition is tested.

If the condition is true, the flow of control jumps back up to repeat, and the statement(s)
in the loop execute again. This process repeats until the given condition becomes false.

Flow Diagram:

value of a: 10
value of a: 11
value of a: 12

value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18

value of a: 19
value of a: 20

repeat
 S1;
 S2;

 ...
 ...
 Sn;

until condition;

repeat
 sum := sum + number;
 number := number - 2;
until number = 0;

TUTORIALS POINT

Simply Easy Learning Page 49

Example:

When the above code is compiled and executed, it produces following result:

Nested Loops

program repeatUntilLoop;
var
 a: integer;
begin

 a := 10;
 (* repeat until loop execution *)

 repeat
 writeln('value of a: ', a);
 a := a + 1
 until a = 20;
end.

value of a: 10
value of a: 11
value of a: 12
value of a: 13

value of a: 14
value of a: 15

value of a: 16
value of a: 17
value of a: 18
value of a: 19

TUTORIALS POINT

Simply Easy Learning Page 50

Pascal allows using one loop inside another loop. Following section shows few examples to
illustrate the concept.

The syntax for a nested for-do loop statement in Pascal is as follows:

The syntax for a nested while-do loop statement in Pascal is as follows:

The syntax for a nested repeat ... until loop Pascal is as follows:

A final note on loop nesting is that you can put any type of loop inside of any other type of loop.
For example a for loop can be inside a while loop or vice versa.

Example:

The following program uses a nested for loop to find the prime numbers from 2 to 50:

for variable1:=initial_value1 to [downto] final_value1 do
begin

 for variable2:=initial_value2 to [downto] final_value2 do
 begin
 statement(s);
 end;
end;

while(condition1)do
begin
 while(condition2) do
 begin
 statement(s);
 end;

 statement(s);
end;

repeat
 statement(s);

 repeat
 statement(s);
 until(condition2);
until(condition1);

TUTORIALS POINT

Simply Easy Learning Page 51

When the above code is compiled and executed, it produces following result:

program nestedPrime;

var
 i, j:integer;
begin
 for i := 2 to 50 do
 begin
 for j := 2 to i do
 if (i mod j)=0 then

 break; {* if factor found, not prime *}
 if(j = i) then
 writeln(i , ' is prime');
 end;
end.

2 is prime
3 is prime
5 is prime
7 is prime
11 is prime
13 is prime

17 is prime
19 is prime
23 is prime
29 is prime
31 is prime
37 is prime

41 is prime
43 is prime
47 is prime

TUTORIALS POINT

Simply Easy Learning Page 52

Loop Control Statements:

Loop control statements change execution from its normal sequence. When execution
leaves a scope, all automatic objects that were created in that scope are destroyed.

Pascal supports the following control statements. Click the following links to check their
detail.

Control Statements Description

break statement Terminates the loop or case statement and transfers execution to
the statement immediately following the loop or case statement.

continue statement Causes the loop to skip the remainder of its body and immediately
retest its condition prior to reiterating.

goto statement Transfers control to the labeled statement. Though it is not advised
to use goto statement in your program.

break statement

The break statement in Pascal has the following two usages:

1. When the break statement is encountered inside a loop, the loop is immediately
terminated and program control resumes at the next statement following the
loop.

2. It can be used to terminate a case in the case statement (covered in the next
chapter).

If you are using nested loops (ie. one loop inside another loop), the break statement will
stop the execution of the innermost loop and start executing the next line of code after
the block.

Syntax:

The syntax for a break statement in Pascal is as follows:

Flow Diagram:

break;

TUTORIALS POINT

Simply Easy Learning Page 53

Example:

When the above code is compiled and executed, it produces following result:

program exBreak;
var
 a: integer;

begin
 a := 10;
 (* while loop execution *)
 while a < 20 do
 begin
 writeln('value of a: ', a);

 a:=a +1;
 if(a > 15) then
 (* terminate the loop using break statement *)
 break;
 end;
end

value of a: 10
value of a: 11
value of a: 12
value of a: 13

value of a: 14
value of a: 15

TUTORIALS POINT

Simply Easy Learning Page 54

continue statement

The continue statement in Pascal works somewhat like the break statement. Instead of

forcing termination, however, continue forces the next iteration of the loop to take place,
skipping any code in between.

For the for-do loop, continue statement causes the conditional test and increment
portions of the loop to execute. For the while-do and repeat...until loops, continue
statement causes the program control passes to the conditional tests.

Syntax:

The syntax for a continue statement in Pascal is as follows:

Flow Diagram:

continue;

TUTORIALS POINT

Simply Easy Learning Page 55

Example:

When the above code is compiled and executed, it produces following result:

program exContinue;
var
 a: integer;
begin
 a := 10;
 (* repeat until loop execution *)
 repeat

 if(a = 15) then
 begin
 (* skip the iteration *)
 a := a + 1;
 continue;

 end;

 writeln('value of a: ', a);
 a := a+1;
 until (a = 20);
end.

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14

value of a: 16
value of a: 17

value of a: 18
value of a: 19

TUTORIALS POINT

Simply Easy Learning Page 56

goto statement

A goto statement in Pascal provides an unconditional jump from the goto to a labeled
statement in the same function.

NOTE: Use of goto statement is highly discouraged in any programming language
because it makes difficult to trace the control flow of a program, making the program hard
to understand and hard to modify. Any program that uses a goto can be rewritten so that
it doesn't need the goto.

Syntax:

The syntax for a goto statement in Pascal is as follows:

Here label must be an unsigned integer label whose value can be from 1 to 9999.

Flow Diagram:

goto label;
 ...
 ...

label: statement;

TUTORIALS POINT

Simply Easy Learning Page 57

Example:

The following program illustrates the concept.

When the above code is compiled and executed, it produces following result:

program exGoto;
label 1;
var
 a : integer;

begin
 a := 10;
 (* repeat until loop execution *)
 1: repeat
 if(a = 15) then
 begin

 (* skip the iteration *)

 a := a + 1;
 goto 1;
 end;
 writeln('value of a: ', a);
 a:= a +1;
 until a = 20;
end.

value of a: 10
value of a: 11
value of a: 12

value of a: 13
value of a: 14
value of a: 16
value of a: 17
value of a: 18
value of a: 19

TUTORIALS POINT

Simply Easy Learning Page 58

Functions

This section shows the general from of functions used in Pascal:

Subprograms

A subprogram is a program unit/module that performs a particular task. These

subprograms are combined to form larger programs. This is basically called the 'Modular
design'. A subprogram can be invoked by a subprogram/program, which is called the
calling program.

Pascal provides two kinds of subprograms:

 Functions: these subprograms return a single value.

 Procedures: these subprograms do not return a value directly.

Functions

A function is a group of statements that together perform a task. Every Pascal program
has at least one function which is the program itself, and all the most trivial programs can
define additional functions.

A function declaration tells the compiler about a function's name, return type, and
parameters. A function definition provides the actual body of the function.

Pascal standard library provides numerous built-in functions that your program can call.
For example, function AppendStr() appends two strings, function New() dynamically
allocates memory to variables and many more functions.

CHAPTER

11

TUTORIALS POINT

Simply Easy Learning Page 59

Defining a Function:

In Pascal, a function is defined using the function keyword. The general form of a
function definition is as follows:

A function definition in Pascal consists of a function header, local declarations and a
function body. The function header consists of the keyword function and a name given to
the function. Here are all the parts of a function:

 Arguments: The argument(s) establish the linkage between the calling program
and the function identifiers and also called the formal parameters. A parameter is

like a placeholder. When a function is invoked, you pass a value to the parameter.
This value is referred to as actual parameter or argument. The parameter list
refers to the type, order, and number of the parameters of a function. Use of such
formal parameters is optional. These parameters may have standard data type,
user-defined datatype or subrange data type.
The formal parameters list appearing in the function statement could be simple or
subscripted variables, arrays or structured variables, or subprograms.

 Return-Type: All functions must return a value, so all functions must be

assigned a type. The function-type is the data type of the value the function
returns. It may be standard, user-defined scalar or subrange type but it cannot be
structured type.

 Local declarations: local declarations refer to the declarations for labels,

constants, variables, functions and procedures, which are application to the body
of function only.

 Function Body: The function body contains a collection of statements that define

what the function does. It should always be enclosed between the reserved words
begin and end. It is the part of a function where all computations are done. There
must be an assignment statement of the type - name := expression; in the
function body that assigns a value to the function name. This value is returned as
and when the function is executed. The last statement in the body must be an
end statement.

Following is an example showing how to define a function in pascal:

function name(argument(s): type1; argument(s): type2; ...): function_type;

local declarations;
begin
 ...
 < statements >
 ...
 name:= expression;
end;

(* function returning the max between two numbers *)

function max(num1, num2: integer): integer;
var
 (* local variable declaration *)
 result: integer;
begin
 if (num1 > num2) then
 result := num1

 else
 result := num2;
 max := result;
end;

TUTORIALS POINT

Simply Easy Learning Page 60

Function Declarations:

A function declaration tells the compiler about a function name and how to call the
function. The actual body of the function can be defined separately.

A function declaration has the following parts:

For the above defined function max(), following is the function declaration:

Function declaration is required when you define a function in one source file and you call
that function in another file. In such case you should declare the function at the top of the
file calling the function.

Calling a Function:

While creating a function, you give a definition of what the function has to do. To use a
function, you will have to call that function to perform the defined task. When a program
calls a function, program control is transferred to the called function. A called function
performs defined task and when its return statement is executed or when it last end
statement is reached, it returns program control back to the main program.

To call a function you simply need to pass the required parameters along with function
name and if function returns a value then you can store returned value. Following is a
simple example to show the usage:

function name(argument(s): type1; argument(s): type2; ...): function_type;

function max(num1, num2: integer): integer;

program exFunction;
var
 a, b, ret : integer;

(*function definition *)
function max(num1, num2: integer): integer;
var
 (* local variable declaration *)
 result: integer;
begin
 if (num1 > num2) then

 result := num1
 else

 result := num2;
 max := result;
end;
begin
 a := 100;

 b := 200;
 (* calling a function to get max value *)
 ret := max(a, b);
 writeln('Max value is : ', ret);
end.

TUTORIALS POINT

Simply Easy Learning Page 61

 When the above code is compiled and executed, it produces following result:

Max value is : 200

TUTORIALS POINT

Simply Easy Learning Page 62

Procedure

This section explain procedure concepts used in Pascal:

P rocedures are subprograms that, instead of returning a single value, allow to

obtain a group of results.

Defining a Procedure:

In Pascal, a procedure is defined using the procedure keyword. The general form of a
procedure definition is as follows:

A procedure definition in Pascal consists of a header , local declarations and a body of

the procedure. The procedure header consists of the keyword procedure and a name
given to the procedure. Here are all the parts of a procedure:

 Arguments: The argument(s) establish the linkage between the calling program

and the procedure identifiers and also called the formal parameters. Rules for
arguments in procedures are same as that for the functions.

 Local declarations: local declarations refer to the declarations for labels,

constants, variables, functions and procedures, which are application to the body
of the procedure only.

 Procedure Body: The procedure body contains a collection of statements that

define what the procedure does. It should always be enclosed between the
reserved words begin and end. It is the part of a procedure where all
computations are done.

Following is the source code for a procedure called findMin(). This procedure takes 4
parameters x, y, z and m and stores the minimum among the first three variables in the

CHAPTER

12

procedure name(argument(s): type1, argument(s): type 2, ...);
 < local declarations >
begin
 < procedure body >
end;

TUTORIALS POINT

Simply Easy Learning Page 63

variable named m. The variable m is passed by reference (we will discuss passing
arguments by reference a little later):

Procedure Declarations:

A procedure declaration tells the compiler about a procedure name and how to call the
procedure. The actual body of the procedure can be defined separately.

A procedure declaration has the following syntax:

Please note that the name of the procedure is not associated with any type. For the
above defined procedure findMin(), following is the declaration:

Calling a Procedure:

While creating a procedure, you give a definition of what the procedure has to do. To use

the procedure, you will have to call that procedure to perform the defined task. When a
program calls a procedure, program control is transferred to the called procedure. A called
procedure performs the defined task and when its last end statement is reached, it returns
the control back to the calling program.

To call a procedure you simply need to pass the required parameters along with the
procedure name as shown below:

procedure findMin(x, y, z: integer; var m: integer);
(* Finds the minimum of the 3 values *)
begin
 if x < y then
 m := x
 else
 m := y;

 if z <m then
 m := z;
end; { end of procedure findMin }

procedure name(argument(s): type1, argument(s): type 2, ...);

procedure findMin(x, y, z: integer; var m: integer);

TUTORIALS POINT

Simply Easy Learning Page 64

When the above code is compiled and executed, it produces following result:

Recursive Subprograms

We have seen that a program or subprogram may call another subprogram. When a

subprogram calls itself, it is referred to as a recursive call and the process is known as
recursion.

To illustrate the concept, let us calculate the factorial of a number. Factorial of a number n
is defined as:

The following program calculates the factorial of a given number by calling itself
recursively.

program exProcedure;
var
 a, b, c, min: integer;
procedure findMin(x, y, z: integer; var m: integer);
(* Finds the minimum of the 3 values *)
begin

 if x < y then
 m:= x
 else
 m:= y;
 if z < m then
 m:= z;
end; { end of procedure findMin }

begin
 writeln(' Enter three numbers: ');

 readln(a, b, c);
 findMin(a, b, c, min); (* Procedure call *)
 writeln(' Minimum: ', min);
end.

Enter three numbers:
89 45 67

Minimum: 45

n! = n*(n-1)!
 = n*(n-1)*(n-2)!
 ...
 = n*(n-1)*(n-2)*(n-3)... 1

TUTORIALS POINT

Simply Easy Learning Page 65

When the above code is compiled and executed, it produces following result:

Following is another example which generates the Fibonacci Series for a given number using
a recursive function:

When the above code is compiled and executed, it produces following result:

Enter a number:
5
Factorial 5 is: 120

program recursiveFibonacci;
var
 i: integer;

function fibonacci(n: integer): integer;
begin
 if n=1 then
 fibonacci := 0
 else if n=2 then
 fibonacci := 1

 else
 fibonacci := fibonacci(n-1) + fibonacci(n-2);
end;
begin
 for i:= 1 to 10 do

 write(fibonacci (i), ' ');
end.

program exRecursion;
var
 num, f: integer;
function fact(x: integer): integer; (* calculates factorial of x - x! *)
begin

 if x=0 then
 fact := 1
 else
 fact := x * fact(x-1); (* recursive call *)
end; { end of function fact}
begin
 writeln(' Enter a number: ');

 readln(num);
 f := fact(num);

 writeln(' Factorial ', num, ' is: ' , f);
end.

0 1 1 2 3 5 8 13 21 34

TUTORIALS POINT

Simply Easy Learning Page 66

Arguments of a Subprogram:

If a subprogram (function or procedure) is to use arguments, it must declare variables

that accept the values of the arguments. These variables are called the formal
parameters of the subprogram.

The formal parameters behave like other local variables inside the subprogram and are
created upon entry into the subprogram and destroyed upon exit.

While calling a subprogram, there are two ways that arguments can be passed to the
subprogram:

Call Type Description

Call by value This method copies the actual value of an argument into the formal
parameter of the subprogram. In this case, changes made to the
parameter inside the subprogram have no effect on the argument.

Call by reference This method copies the address of an argument into the formal
parameter. Inside the subprogram, the address is used to access the
actual argument used in the call. This means that changes made to
the parameter affect the argument.

By default, Pascal uses call by value to pass arguments. In general, this means that code

within a subprogram cannot alter the arguments used to call the subprogram. The
example program we used in the chapter 'Pascal - Functions' called the function named
max() using call by value.

Whereas, the example program provided here (exProcedure) calls the procedure findMin()
using call by reference.

Call by Value

The call by value method of passing arguments to a subprogram copies the actual value
of an argument into the formal parameter of the subprogram. In this case, changes made
to the parameter inside the function have no effect on the argument.

By default, Pascal uses call by value method to pass arguments. In general, this means
that code within a subprogram cannot alter the arguments used to call the subprogram.
Consider the procedure swap() definition as follows.

TUTORIALS POINT

Simply Easy Learning Page 67

Now let us call the procedure swap() by passing actual values as in the following example:

When the above code is compiled and executed, it produces following result:

The program shows that there is no change in the values though they had been
changed inside the subprogram.

procedure swap(x, y: integer);

var

 temp: integer;

begin

 temp := x;

 x:= y;

 y := temp;

end;

program exCallbyValue;

var

 a, b : integer;

(*procedure definition *)

procedure swap(x, y: integer);

var

 temp: integer;

begin

 temp := x;

 x:= y;

 y := temp;

end;

begin

 a := 100;

 b := 200;

 writeln('Before swap, value of a : ', a);

 writeln('Before swap, value of b : ', b);

(* calling the procedure swap by value *)

 swap(a, b);

 writeln('After swap, value of a : ', a);

 writeln('After swap, value of b : ', b);

end.

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

TUTORIALS POINT

Simply Easy Learning Page 68

Call by Reference

The call by reference method of passing arguments to a subprogram copies the address

of an argument into the formal parameter. Inside the subprogram, the address is used to
access the actual argument used in the call. This means that changes made to the
parameter affect the passed argument.

In order to pass the arguments by reference, Pascal allows to define variable
parameters. This is done by preceding the formal parameters by the keyword var. let us
take the example of the procedure swap() that swaps the values in two variables and

reflect the change in the calling subprogram.

Next, let us call the procedure swap() by passing values by reference as in the following
example:

procedure swap(var x, y: integer);

var

 temp: integer;

begin

 temp := x;

 x:= y;

 y := temp;

end;

program exCallbyRef;

var

 a, b : integer;

(*procedure definition *)

procedure swap(var x, y: integer);

var

 temp: integer;

begin

 temp := x;

 x:= y;

 y := temp;

end;

begin

 a := 100;

 b := 200;

 writeln('Before swap, value of a : ', a);

 writeln('Before swap, value of b : ', b);

 (* calling the procedure swap by value *)

 swap(a, b);

 writeln('After swap, value of a : ', a);

 writeln('After swap, value of b : ', b);

end.

TUTORIALS POINT

Simply Easy Learning Page 69

When the above code is compiled and executed, it produces following result:

Which shows that now the procedure swap() has changed the values in the calling
program.

Before swap, value of a : 100

Before swap, value of b : 200

After swap, value of a : 200

After swap, value of b : 100

TUTORIALS POINT

Simply Easy Learning Page 70

Variable Scope

This section explains the scope of variables in Pascal programming:

A scope in any programming is a region of the program where a defined variable

can have its existence and beyond that variable cannot be accessed. There are three

places where variables can be declared in Pascal programming language:

 Inside a subprogram or a block which is called local variables

 Outside of all subprograms which is called global variables

 In the definition of subprogram parameters which is called formal parameters

Let us explain what are local and global variables and formal parameters.

Local Variables

Variables that are declared inside a subprogram or block are called local variables. They
can be used only by statements that are inside that subprogram or block of code. Local
variables are not known to subprograms outside their own. Following is the example using
local variables. Here all the variables a, b and c are local to program named exLocal.

When the above code is compiled and executed, it produces following result:

CHAPTER

13

program exLocal;
var
 a, b, c: integer;
begin
 (* actual initialization *)

 a := 10;
 b := 20;

 c := a + b;
 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);
end.

value of a = 10 b = 20 c = 30

TUTORIALS POINT

Simply Easy Learning Page 71

Now, let us extend the program little more, let us create a procedure named display which will
have its own set of variables a, b and c and display their values, right from the program
exLocal.

When the above code is compiled and executed, it produces following result:

Global Variables

Global variables are defined outside of a function, usually on top of the program. The

global variables will hold their value throughout the lifetime of your program and they can
be accessed inside any of the functions defined for the program.

A global variable can be accessed by any function. That is, a global variable is available
for use throughout your entire program after its declaration. Following is an example using
global and local variables:

program exLocal;
var
 a, b, c: integer;
procedure display;
var
 a, b, c: integer;

begin
 (* local variables *)
 a := 10;
 b := 20;
 c := a + b;

 writeln('Winthin the procedure display');
 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);

end;
begin
 a:= 100;
 b:= 200;
 c:= a + b;
 writeln('Winthin the program exlocal');

 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);
 display();
end.

Within the program exlocal
value of a = 100 b = 200 c = 300
Within the procedure display
value of a = 10 b = 20 c = 30

TUTORIALS POINT

Simply Easy Learning Page 72

When the above code is compiled and executed, it produces following result:

Please note that the procedure display has access to the variables a, b and c, which are
global variables with respect to display as well as its own local variables. A program can
have same name for local and global variables but value of local variable inside a function
will take preference.

program exGlobal;
var
 a, b, c: integer;

procedure display;
var
 x, y, z: integer;
begin
 (* local variables *)
 x := 10;

 y := 20;
 z := x + y;
 (*global variables *)
 a := 30;

 b:= 40;
 c:= a + b;
 writeln('Winthin the procedure display');

 writeln(' Displaying the global variables a, b, and c');
 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);
 writeln('Displaying the local variables x, y, and z');
 writeln('value of x = ', x , ' y = ', y, ' and z = ', z);
end;
begin
 a:= 100;

 b:= 200;
 c:= 300;
 writeln('Winthin the program exlocal');
 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);
 display();
end.

Within the program exlocal
value of a = 100 b = 200 c = 300

Within the procedure display
Displaying the global variables a, b, and c
value of a = 30 b = 40 c = 70
Displaying the local variables x, y, and z
value of x = 10 y = 20 z = 30

TUTORIALS POINT

Simply Easy Learning Page 73

Let us change the previous example a little, now the local variables for the procedure
display has same names as a, b, c:

When the above code is compiled and executed, it produces following result:

program exGlobal;
var
 a, b, c: integer;

procedure display;
var
 a, b, c: integer;
begin
 (* local variables *)
 a := 10;

 b := 20;

 c := a + b;
 writeln('Winthin the procedure display');
 writeln(' Displaying the global variables a, b, and c');
 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);
 writeln('Displaying the local variables a, b, and c');
 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);

end;
begin
 a:= 100;
 b:= 200;
 c:= 300;
 writeln('Winthin the program exlocal');
 writeln('value of a = ', a , ' b = ', b, ' and c = ', c);

 display();
end.

Within the program exlocal
value of a = 100 b = 200 c = 300
Within the procedure display
Displaying the global variables a, b, and c
value of a = 10 b = 20 c = 30
Displaying the local variables a, b, and c

value of a = 10 b = 20 c = 30

TUTORIALS POINT

Simply Easy Learning Page 74

Strings

This section shows the concept of Strings:

T he string in Pascal is actually a sequence of characters with an optional size

specification. The characters could be numeric, letters, blank, special characters or a
combination of all. Extended Pascal provides numerous types of string objects depending
upon the system and implementation. We will discuss more commonly types of strings
used in programs.

You can define a string in many ways:

 Character arrays: This is a character string (or string for short) is a sequence of
zero or more byte-sized characters enclosed in single quotes.

 String variables: The variable of String type, as defined in Turbo Pascal.
 Short strings: The variable of String type with size specification.
 Null terminated strings: The variable of pchar type.
 AnsiStrings: AnsiStrings are strings that have no length limit.

Pascal provides only one string operator . string concatenation operator (+).

Examples

The following program prints first four kinds of strings. We will use AnsiStrings in the next
example.

CHAPTER

14

program exString;
var
 greetings: string;

 name: packed array [1..10] of char;

 organisation: string[10];
 message: pchar;
begin

TUTORIALS POINT

Simply Easy Learning Page 75

When the above code is compiled and executed, it produces following result:

Following example makes use of few more functions, let's see:

When the above code is compiled and executed, it produces following result:

Please Enter your Name
John Smith
Please Enter the name of your Organisation

Infotech
Hello John Smith from Infotech

program exString;
uses sysutils;

var
 str1, str2, str3 : ansistring;
 str4: string;

 len: integer;
begin
 str1 := 'Hello ';
 str2 := 'There!';
 (* copy str1 into str3 *)
 str3 := str1;
 writeln('appendstr(str3, str1) : ', str3);

 (* concatenates str1 and str2 *)
 appendstr(str1, str2);
 writeln('appendstr(str1, str2) ' , str1);
 str4 := str1 + str2;
 writeln('Now str4 is: ', str4);

 (* total lenghth of str4 after concatenation *)

 len := byte(str4[0]);
 writeln('Length of the final string str4: ', len);
end.

appendstr(str3, str1) : Hello

appendstr(str1, str2) : Hello There!
Now str4 is: Hello There! There!
Length of the final string str4: 18

TUTORIALS POINT

Simply Easy Learning Page 76

Pascal String Functions and Procedures

Pascal supports a wide range of functions and procedures that manipulate strings. These

subprograms vary implement-wise. Here we are listing various string manipulating
subprograms provided by Free Pascal:

S.N. Function Name & Description

1 function AnsiCompareStr(const S1: ; const S2:):Integer;

Compare two strings

2 function AnsiCompareText(const S1: ; const S2:):Integer;

Compare two strings, case insensitive

3 function AnsiExtractQuotedStr(var Src: PChar; Quote: Char):;

Removes quotes from string

4 function AnsiLastChar(const S:):PChar;

Get last character of string

5 function AnsiLowerCase(const s:):

Convert string to all-lowercase

6 function AnsiQuotedStr(const S: ; Quote: Char):;

Convert string to all-lowercase

7 function AnsiStrComp(S1: PChar; S2: PChar):Integer;

Compare strings case-sensitive

8 function AnsiStrIComp(S1: PChar; S2: PChar):Integer;

Compare strings case-insensitive

9 function AnsiStrLComp(S1: PChar; S2: PChar; MaxLen: Cardinal):Integer;

Compare L characters of strings case sensitive

10 function AnsiStrLComp(S1: PChar; S2: PChar; MaxLen: Cardinal):Integer;

Compare L characters of strings case insensitive

11 function AnsiStrLastChar(Str: PChar):PChar;

Get last character of string

TUTORIALS POINT

Simply Easy Learning Page 77

12 function AnsiStrLower(Str: PChar):PChar;

Convert string to all-lowercase

13 function AnsiStrUpper(Str: PChar):PChar;

Convert string to all-uppercase

14 function AnsiUpperCase(const s:):;

Convert string to all-uppercase

15 procedure AppendStr(var Dest: ; const S:);

Append 2 strings

16 procedure AssignStr(var P: PString; const S:);

Assign value of strings on heap

17 function CompareStr(const S1: ; const S2:):Integer; overload;

Compare two strings case sensitive

18 function CompareText(const S1: ; const S2:):Integer;

Compare two strings case insensitive

19 procedure DisposeStr(S: PString); overload;

Remove string from heap

20 procedure DisposeStr(S: PShortString); overload;

Remove string from heap

21 function IsValidIdent(const Ident:):Boolean;

Is string a valid pascal identifier

22 function LastDelimiter(const Delimiters: ; const S:):Integer;

Last occurance of character in a string

23 function LeftStr(const S: ; Count: Integer):;

Get first N characters of a string

24 function LoadStr(Ident: Integer):;

Load string from resources

25 function LowerCase(const s:):; overload;

TUTORIALS POINT

Simply Easy Learning Page 78

Convert string to all-lowercase

26 function LowerCase(const V: variant):; overload;

Convert string to all-lowercase

27 function NewStr(const S:):PString; overload;

Allocate new string on heap

28 function RightStr(const S: ; Count: Integer):;

Get last N characters of a string

29 function StrAlloc(Size: Cardinal):PChar;

Allocate memory for string

30 function StrBufSize(Str: PChar):SizeUInt;

Reserve memory for a string

31 procedure StrDispose(Str: PChar);

Remove string from heap

32 function StrPas(Str: PChar):;

Convert PChar to pascal string

33 function StrPCopy(Dest: PChar; Source:):PChar;

Copy pascal string

34 function StrPLCopy(Dest: PChar; Source: ; MaxLen: SizeUInt):PChar;

Copy N bytes of pascal string

35 function UpperCase(const s:):;

Convert string to all-uppercase

TUTORIALS POINT

Simply Easy Learning Page 79

Boolean

This section shows Boolean Data Type with it’s Declaration:

P ascal provides data types Boolean that enables the programmers to define, store

and manipulate logical entities, such as constants, variables, functions and expressions
etc.

Boolean values are basically integer type. Boolean type variables have two pre-defined
possible values True and False. The expressions resolving to a Boolean value can also be
assigned to a Boolean type.

Free Pascal also supports the ByteBool, WordBool and LongBool types. These are of type
Byte, Word or Longint respectively.

The value False is equivalent to 0 (zero) and any nonzero value is considered True when
converting to a Boolean value. A Boolean value of True is converted to -1 in case it is
assigned to a variable of type LongBool.

It should be noted that logical operators and, or and not are defined for Boolean data
types.

Declaration of Boolean Data Types

A variable of Boolean type is declared using the var keyword.

for example,

CHAPTER

15

var
boolean-identifier: boolean;

var
choice: boolean;

TUTORIALS POINT

Simply Easy Learning Page 80

Example:

When the above code is compiled and executed, it produces following result:

program exBoolean;
var
exit: boolean;
choice: char;
 begin
 writeln('Do you want to continue? ');

 writeln('Enter Y/y for yes, and N/n for no');
 readln(choice);
if(choice = 'n') then
 exit := true
else

 exit := false;
if (exit) then

 writeln(' Good Bye!')
else
 writeln('Please Continue');
readln;
end.

Do you want to continue?
Enter Y/y for yes, and N/n for no
N
Good Bye!

Y

Please Continue

TUTORIALS POINT

Simply Easy Learning Page 81

Arrays

This section shows concept of Arrays:

 P ascal programming language provides a data structure called the array, which

can store a fixed-size sequential collection of elements of the same type. An array is used

to store a collection of data, but it is often more useful to think of an array as a collection
of variables of the same type.

Instead of declaring individual variables, such as number1, number2, ..., and number100,

you declare one array variable such as numbers and use numbers[1], numbers[2], and ...,
numbers[100] to represent individual variables. A specific element in an array is accessed
by an index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the
first element and the highest address to the last element.

Please note that if you want a C style array starting from index 0, you just need to start
the index from 0, instead of 1.

Declaring Arrays

To declare an array in Pascal, a programmer may either declare the type and then create
variables of that array or directly declare the array variable.

The general form of type declaration of one dimensional array is:

CHAPTER

16

type
 array-identifier = array[index-type] of element-type;

TUTORIALS POINT

Simply Easy Learning Page 82

Where,

 array-identifier indicates the name of the array type.
 index-type specifies the subscript of the array; it can be any scalar data type

except real
 element-type specifies the types of values that are going to be stored.

For example,

Now velocity is a variable array of vector type, which is sufficient to hold up to 25 real
numbers.

To start the array from 0 index, the declaration would be:

Types of Array Subscript

In Pascal, an array subscript could be of any scalar type like, integer, Boolean,
enumerated or subrange, except real. Array subscripts could have negative values too.

For example,

Let us take up another example where the subscript is of character type:

Subscript could be of enumerated type:

type
 vector = array [1..25] of real;
var
 velocity: vector;

type
 vector = array [0..24] of real;
var
 velocity: vector;

type
 temperature = array [-10 .. 50] of real;
var
 day_temp, night_temp: temperature;

type
 ch_array = array[char] of 1..26;
var
 alphabet: ch_array;

type
 color = (red, black, blue, silver, beige);

 car_color = array of [color] of boolean;
var

 car_body: car_color;

TUTORIALS POINT

Simply Easy Learning Page 83

Initializing Arrays

In Pascal, arrays are initialized through assignment, either by specifying a particular
subscript or using a for-do loop.

For example:

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of the

element within square brackets after the name of the array. For example:

The above statement will take the first element from the array named alphabet and assign the
value to the variable a.

Following is an example which will use all the above mentioned three concepts viz. declaration,
assignment and accessing arrays:

When the above code is compiled and executed, it produces following result:

type
 ch_array = array[char] of 1..26;

var
 alphabet: ch_array;
 c: char;
begin

 ...
 for c:= 'A' to 'Z' do
 alphabet[c] := ord[m];

 (* the ord() function returns the ordinal values *)

a: integer;
a: = alphabet['A'];

program exArrays;
var
 n: array [1..10] of integer; (* n is an array of 10 integers *)

 i, j: integer;
begin
 (* initialize elements of array n to 0 *)
 for i := 1 to 10 do

 n[i] := i + 100; (* set element at location i to i + 100 *)
 (* output each array element's value *)

 for j:= 1 to 10 do
 writeln('Element[', j, '] = ', n[j]);
end.

TUTORIALS POINT

Simply Easy Learning Page 84

Pascal Arrays in Detail

Arrays are important to Pascal and should need lots of more detail. There are following
few important concepts related to array which should be clear to a Pascal programmer:

Multi-dimensional arrays

Pascal programming language allows multidimensional arrays. Here is the general form of
a multidimensional array declaration:

For example, the following declaration creates a three dimensional 5 . 10 . 4 integer
array:

Concept Description

Multi-dimensional arrays Pascal supports multidimensional arrays. The simplest form of
the multidimensional array is the two-dimensional array.

Dynamic array In this type of arrays, the initial length is zero. The actual
length of the array must be set with the standard SetLength
function.

Packed array These arrays are bit-packed, i.e., each character or truth
values are stored in consecutive bytes instead of using one
storage unit, usually a word (4 bytes or more).

Passing arrays to
subprograms

You can pass to a subprogram a pointer to an array by
specifying the array's name without an index.

Element[1] = 101
Element[2] = 102
Element[3] = 103

Element[4] = 104
Element[5] = 105
Element[6] = 106
Element[7] = 107
Element[8] = 108
Element[9] = 109
Element[10] = 110

type
 array-identifier = array [index-type1, index-type2, ...] of element-type;
var

 a1, a2, ... : array-identifier;

var
 threedim: array[1..5, 1..10, 1..4] of integer;

TUTORIALS POINT

Simply Easy Learning Page 85

Two-Dimensional Arrays:

The simplest form of the multidimensional array is the two-dimensional array. A two-

dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-
dimensional integer array of size x, y you would write something as follows:

Where element-type can be any valid Pascal data type and arrayName will be a valid

Pascal identifier. A two dimensional array can be visualized as a table which will have x
number of rows and y number of columns. A 2-dimentional array that contains three rows
and four columns can be shown as below:

Thus, every element in array a is identified by an element name of the form a[i][j],
where a is the name of the array, and i and j are the subscripts that uniquely identify each
element in a.

Initializing Two-Dimensional Arrays:

Multi-dimensional arrays, like one dimensional array are initialized by through assignment,
either by specifying a particular subscript or using a for-do loop.

For example,

Accessing Two-Dimensional Array Elements:

An element in 2-dimensional array is accessed by using the subscripts ie. row index and
column index of the array. For example:

var
 arrayName: array[1..x, 1..y] of element-type;

var
 a: array [0..3, 0..3] of integer;

 i, j : integer;
begin
 for i:= 0 to 3 do
 for j:= 0 to 3 do
 a[i,j]:= i * j;

 ...

end;

var
 val: integer;
 val := a[2, 3];

TUTORIALS POINT

Simply Easy Learning Page 86

The above statement will take 4th element from the 3rd row of the array. You can verify it
in the above diagram. Let us check below program where we have used nested loop to
handle a two dimensional array:

When the above code is compiled and executed, it produces following result:

As explained above, you can have arrays with any number of dimensions, although it is
likely that most of the arrays you create will be of one or two dimensions.

Dynamic Arrays

In case of a dynamic array type, the initial length of the array is zero. The actual length of
the array must be set with the standard SetLength function, which will allocate the
necessary memory for storing the array elements.

Declaring Dynamic Arrays

For declaring dynamic arrays you do not mention the array range. For example:

Before using the array, you must declare the size using the setlength function:

Now the array a have a valid array index range from 0 to 999: the array index is always
zero-based.

program ex2dimarray;

var
 a: array [0..3, 0..3] of integer;
 i,j : integer;
begin
 for i:=0 to 3 do
 for j:=0 to 3 do
 a[i,j]:= i * j;

 for i:=0 to 3 do
 begin
 for j:=0 to 3 do

 write(a[i,j]:2,' ');
 writeln;
 end;

end.

0 0 0 0
0 1 2 3
0 2 4 6
1 3 6 9

type

 darray = array of integer;

var
 a: darray;

setlength(a,100);

TUTORIALS POINT

Simply Easy Learning Page 87

The following example declares and uses a two dimensional dynamic array:

When the above code is compiled and executed, it produces following result:

program exDynarray;
var
 a: array of array of integer; (* a 2 dimensional array *)

 i, j : integer;
begin
 setlength(a,5,5);
 for i:=0 to 4 do
 for j:=0 to 4 do
 a[i,j]:= i * j;

 for i:=0 to 4 do
 begin
 for j:= 0 to 4 do
 write(a[i,j]:2,' ');

 writeln;
 end;
end.

0 0 0 0 0
0 1 2 3 4
0 2 4 6 8
0 3 6 9 12

0 4 8 12 16

TUTORIALS POINT

Simply Easy Learning Page 88

Packed Array

These arrays are bit-packed, i.e., each character or truth values are stored in consecutive
bytes instead of using one storage unit, usually a word (4 bytes or more).

Normally characters and Boolean values are stored in such a way that each character or
truth value uses one storage unit like a word. This is called unpacked mode of data
storage. Storage is fully utilized if characters are stored in consecutive bytes. This is called
packed mode of data storage. Pascal allows the array data to be stored in packed mode.

Declaring Packed Arrays

Packed arrays are declared using the keywords packed array instead of array. For
example:

The following example declares and uses a two dimensional packed array:

When the above code is compiled and executed, it produces following result:

type
 pArray: packed array[index-type1, index-type2, ...] of element-type;
var
 a: pArray;

program packedarray;
var
 a: packed array [0..3, 0..3] of integer;

 i, j : integer;
begin
 for i:=0 to 3 do

 for j:=0 to 3 do
 a[i,j]:= i * j;
 for i:=0 to 3 do
 begin
 for j:=0 to 3 do
 write(a[i,j]:2,' ');
 writeln;

 end;
end.

0 0 0 0
0 1 2 3
0 2 4 6

1 3 6 9

TUTORIALS POINT

Simply Easy Learning Page 89

Passing Arrays as Subprogram Arguments

Pascal allows passing arrays as subprogram parameters. Following function will take an
array as an argument and return average of the numbers passed through the array as
follows:

When the above code is compiled and executed, it produces following result:

program arrayToFunction;
const
 size = 5;
type

 a = array [1..size] of integer;
var
 balance: a = (1000, 2, 3, 17, 50);
 average: real;

function avg(var arr: a) : real;
var
 i :1..size;

 sum: integer;
begin
 sum := 0;
 for i := 1 to size do
 sum := sum + arr[i];
 avg := sum / size;
end;

begin
 (* Passing the array to the function *)
 average := avg(balance) ;
 (* output the returned value *)
 writeln('Average value is: ', average:7:2);

end.

Average value is: 214.40

TUTORIALS POINT

Simply Easy Learning Page 90

Pointers

This section shows the concepts and usage of Pointers in Pascal:

P ointers in Pascal are easy and fun to learn. Some Pascal programming tasks are

performed more easily with pointers, and other tasks, such as dynamic memory
allocation, cannot be performed without using pointers. So it becomes necessary to learn
pointers to become a perfect Pascal programmer. Let's start learning them in simple and
easy steps.

As you know every variable is a memory location and every memory location has its
address defined which can be accessed using the name of the pointer variable, which
denotes an address in memory.

What Are Pointers?

A pointer is a dynamic variable whose value is the address of another variable i.e. direct

address of the memory location. Like any variable or constant, you must declare a pointer
before you can use it to store any variable address. The general form of a pointer variable
declaration is:

The pointer type is defined by prefixing the up-arrow of caret symbol (^) with the base

type. The base-type defines the types of the data items. Once a pointer variable is defined
to be of certain type, it can point data items of that type only. Once a pointer type has
been defined, we can use the var declaration to declare pointer variables.

CHAPTER

17

type
 ptr-identifier = ^base-variable-type;

var
 p1, p2, ... : ptr-identifier;

TUTORIALS POINT

Simply Easy Learning Page 91

Following are some valid pointer declarations:

The pointer variables are dereferenced by using the same caret symbol(^). For example, the
associated variable referred by a pointer rptr, is rptr^. It can be accessed as:

The following example will illustrate this concept:

When the above code is compiled and executed, it produces following result:

Printing a Memory Address in Pascal

In Pascal, we can assign the address of a variable to a pointer variable using the address

operator (@). We use this pointer to manipulate and access the data item. However, if for

type
 Rptr = ^real;
 Cptr = ^char;
 Bptr = ^ Boolean;
 Aptr = ^array[1..5] of real;

 date-ptr = ^ date;
 Date = record
 Day: 1..31;
 Month: 1..12;
 Year: 1900..3000;
 End;
var

 a, b : Rptr;
 d: date-ptr;

rptr^ := 234.56;

program exPointers;
var
 number: integer;

 iptr: ^integer;
begin
 number := 100;
 writeln('Number is: ', number);
 iptr := @number;
 writeln('iptr points to a value: ', iptr^);

 iptr^ := 200;
 writeln('Number is: ', number);
 writeln('iptr points to a value: ', iptr^);
end.

Number is: 100
iptr points to a value: 100

Number is: 200
iptr points to a value: 200

TUTORIALS POINT

Simply Easy Learning Page 92

some reason, we need to work with the memory address itself, we need to store it in a word
type variable.

Let us extend the above example to print the memory address stored in the pointer iptr:

When the above code is compiled and executed, it produces following result:

NILL Pointers

It is always a good practice to assign a NILL value to a pointer variable in case you do not

have exact address to be assigned. This is done at the time of variable declaration. A pointer
that is assigned NILL points to nowhere. Consider the following program:

When the above code is compiled and executed, it produces following result:

program exPointers;
var
 number: integer;
 iptr: ^integer;

 y: ^word;
begin

 number := 100;
 writeln('Number is: ', number);
 iptr := @number;

 writeln('iptr points to a value: ', iptr^);

 iptr^ := 200;
 writeln('Number is: ', number);
 writeln('iptr points to a value: ', iptr^);
 y := addr(iptr);
 writeln(y^);
end.

Number is: 100
iptr points to a value: 100
Number is: 200

iptr points to a value: 200

36864

program exPointers;
var
 number: integer;
 iptr: ^integer;

 y: ^word;
begin
 iptr := nil;
 y := addr(iptr);
 writeln('the vaule of iptr is ', y^);
end.

The value of ptr is 0

TUTORIALS POINT

Simply Easy Learning Page 93

To check for a nill pointer you can use an if statement as follows:

Pascal Pointers in Detail:

Pointers have many but easy concepts and they are very important to Pascal programming.

There are following few important pointer concepts which should be clear to a Pascal
programmer:

Concept Description

Pascal - Pointer arithmetic There are four arithmetic operators that can be used on
pointers: increment, decrement, +, -

Pascal - Array of pointers You can define arrays to hold a number of pointers.

Pascal - Pointer to pointer Pascal allows you to have pointer on a pointer and so on.

Passing pointers to
subprograms in Pascal

Passing an argument by reference or by address both enable
the passed argument to be changed in the calling subprogram
by the called subprogram.

Return pointer from

subprograms in Pascal

Pascal allows a subprogram to return a pointer.

Pointer arithmetic

As explained in main chapter, Pascal pointer is an address which is a numerical value

stored in a word. Therefore, you can perform arithmetic operations on a pointer just as you
can on a numeric value. There are four arithmetic operators that can be used on pointers:
increment, decrement, +, and -

To understand pointer arithmetic, let us consider that ptr is an integer pointer which points
to the address 1000. Assuming 32-bit integers, let us perform the increment operation on
the pointer:

Now after the above operation, the ptr will point to the location 1004 because each time
ptr is incremented, it will point to the next integer location which is 4 bytes next to the
current location. This operation will move the pointer to next memory location without
impacting actual value at the memory location. If ptr points to a character whose address
is 1000, then above operation will point to the location 1001 because next character will be
available at 1001.

if(ptr <> nill)then (* succeeds if p is not null *)
if(ptr = nill)then (* succeeds if p is null *)

Inc(ptr);

TUTORIALS POINT

Simply Easy Learning Page 94

Incrementing a Pointer

We prefer using a pointer in our program instead of an array because the variable pointer
can be incremented, unlike the array name which cannot be incremented because it is a
constant pointer. The following program increments the variable pointer to access each
succeeding element of the array:

When the above code is compiled and executed, it produces following result:

Decrementing a Pointer

The same considerations apply to decrementing a pointer, which decreases its value by the
number of bytes of its data type as shown below:

program exPointers;

const MAX = 3;
var
 arr: array [1..MAX] of integer = (10, 100, 200);
 i: integer;
 iptr: ^integer;

 y: ^word;
begin

 (* let us have array address in pointer *)
 iptr := @arr[1];
 for i := 1 to MAX do
 begin
 y:= addr(iptr);
 writeln('Address of arr[', i, '] = ' , y^);

 writeln(' Value of arr[', i, '] = ' , iptr^);
 (* move to the next location *)
 inc(iptr);
 end;
end.

Address of arr[1] = 32880

Value of arr[1] = 10
Address of arr[2] = 32882
Value of arr[2] = 100
Address of arr[3] = 32884
Value of arr[3] = 200

TUTORIALS POINT

Simply Easy Learning Page 95

 When the above code is compiled and executed, it produces following result:

Pointer Comparisons

Pointers may be compared by using relational operators, such as =, <, and >. If p1 and

p2 point to variables that are related to each other, such as elements of the same array,
then p1 and p2 can be meaningfully compared.

The following program modifies the previous example one by incrementing the variable
pointer so long as the address to which it points is either less than or equal to the address
of the last element of the array, which is @arr[MAX]:

program exPointers;

const MAX = 3;
var
 arr: array [1..MAX] of integer = (10, 100, 200);
 i: integer;
 iptr: ^integer;
 y: ^word;
begin

 (* let us have array address in pointer *)
 iptr := @arr[MAX];
 for i := MAX downto 1 do
 begin
 y:= addr(iptr);

 writeln('Address of arr[', i, '] = ' , y^);
 writeln(' Value of arr[', i, '] = ' , iptr^);

 (* move to the next location *)
 dec(iptr);
 end;
end.

Address of arr[3] = 32884
Value of arrr[3] = 200
Address of arr[2] = 32882

Value of arr[2] = 100

Address of arr[1] = 32880
Value of arr[1] = 10

TUTORIALS POINT

Simply Easy Learning Page 96

When the above code is compiled and executed, it produces following result:

 Array of Pointers

Pascal allows defining an array of pointers. There may be a situation when we want to
maintain an array which can store pointers to integers or characters or any other data
type available. Following is the declaration of an array of pointers to an integer:

This declares parray as an array of MAX integer pointers. Thus, each element in parray,
now holds a pointer to an integer value. Following example makes use of three integers
which will be stored in an array of pointers as follows:

program exPointers;
const MAX = 3;
var
 arr: array [1..MAX] of integer = (10, 100, 200);
 i: integer;

 iptr: ^integer;
 y: ^word;
begin
 i:=1;
 (* let us have array address in pointer *)
 iptr := @arr[1];
 while (iptr <= @arr[MAX]) do

 begin

 y:= addr(iptr);
 writeln('Address of arr[', i, '] = ' , y^);
 writeln(' Value of arr[', i, '] = ' , iptr^);
 (* move to the next location *)
 inc(iptr);

 i := i+1;
 end;
end.

Address of arr[1] = 32880
Value of arr[1] = 10

Address of arr[2] = 32882

Value of arr[2] = 100
Address of arr[3] = 32884
Value of arr[3] = 200

type
 iptr = ^integer;

var
 parray: array [1..MAX] of iptr;

TUTORIALS POINT

Simply Easy Learning Page 97

You can also use an array of pointers to string variables to store a list of strings as
follows:

When the above code is compiled and executed, it produces following result:

program exPointers;
const MAX = 3;
type
 iptr = ^integer;
var

 arr: array [1..MAX] of integer = (10, 100, 200);
 i: integer;
 parray: array[1..MAX] of iptr;
begin
 (* let us assign the addresses to parray *)
 for i:= 1 to MAX do
 parray[i] := @arr[i];

 (* let us print the values using the pointer array *)

 for i:=1 to MAX do
 writeln(' Value of arr[', i, '] = ' , parray[i]^);
end.

program exPointers;
const
 MAX = 4;
type
 sptr = ^ string;
var

 i: integer;

 names: array [1..4] of string = ('Zara Ali', 'Hina Ali',
 'Nuha Ali','Sara Ali') ;
 parray: array[1..MAX] of sptr;
begin
 for i := 1 to MAX do
 parray[i] := @names[i];

 for i:= 1 to MAX do
 writeln('Value of names[', i, '] = ' , parray[i]^);
end.

Value of names[1] = Zara Ali
Value of names[2] = Hina Ali

Value of names[3] = Nuha Ali
Value of names[4] = Sara Ali

TUTORIALS POINT

Simply Easy Learning Page 98

Pointer to Pointer

A pointer to a pointer is a form of multiple indirection, or a chain of pointers. Normally, a
pointer contains the address of a variable. When we define a pointer to a pointer, the first
pointer contains the address of the second pointer, which points to the location that
contains the actual value as shown below.

A variable that is a pointer to a pointer must be declared as such. For example,

Following example would illustrate the concept as well as display the addresses:

When the above code is compiled and executed, it produces following result:

type
 iptr = ^integer;
 pointerptr = ^ iptr;

Enter the radius of the circle
program exPointertoPointers;
type
 iptr = ^integer;

 pointerptr = ^ iptr;
var

 num: integer;
 ptr: iptr;
 pptr: pointerptr;
 x, y : ^word;
begin
 num := 3000;
 (* take the address of var *)

 ptr := @num;
 (* take the address of ptr using address of operator @ *)
 pptr := @ptr;
 (* let us see the value and the adresses *)
 x:= addr(ptr);
 y := addr(pptr);

 writeln('Value of num = ', num);

 writeln('Value available at ptr^ = ', ptr^);
 writeln('Value available at pptr^^ = ', pptr^^);
 writeln('Address at ptr = ', x^);
 writeln('Address at pptr = ', y^);
end.

TUTORIALS POINT

Simply Easy Learning Page 99

Passing Pointers to Subprograms

Pointer variables may be passed as parameters in function and procedure arguments.
Pointer variables can be passed on both as value and variable parameters; however, when
passed as variable parameters, the subprogram might inadvertently alter the value of the
pointer which will lead to strange results.

The following program illustrates passing pointer to a function:

When the above code is compiled and executed, it produces following result:

Value of num = 3000
Value available at ptr^ = 3000
Value available at pptr^^ = 3000

Address at ptr = 36864
Address at pptr = 36880

program exPointertoFunctions;
type

 iptr = ^integer;
var
 i: integer;
 ptr: iptr;
function getNumber(p: iptr): integer;
var

 num: integer;
begin
 num:=100;
 p:= @num;
 getNumber:=p^;
 end;
begin

 i := getNumber(ptr);
 writeln(' Here the pointer brings the value ', i);
end.

Here the pointer brings the value: 100

TUTORIALS POINT

Simply Easy Learning Page 100

Return Pointer from Subprograms

A function can return a pointer as its result. The following program illustrates returning
pointer from a function:

When the above code is compiled and executed, it produces following result:

program exPointersFromFunctions;

type
 ptr = ^integer;
var
 i: integer;
 iptr: ptr;
function getValue(var num: integer): ptr;
begin

 getValue:= @num;

end;
begin
 i := 100;
 iptr := getValue(i);
 writeln('Value deferenced: ', iptr^);

end.

Value dereferenced: 100

TUTORIALS POINT

Simply Easy Learning Page 101

Records

This section shows the concepts under Records:

P ascal arrays allow you to define type of variables that can hold several data items

of the same kind but a record is another user defined data type available in Pascal, which
allows you to combine data items of different kinds.

Records consist of different fields. Suppose you want to keep track of your books in a
library. You might want to track the following attributes about each book:

 Title
 Author
 Subject
 Book ID

Defining a Record

To define a record type, you may use the type declaration statement. The record type is
defined as:

Here is the way you would declare the Book record:

CHAPTER

18

type

record-name = record
 field-1: field-type1;
 field-2: field-type2;
 ...
 field-n: field-typen;
end;

type
Books = record
 title: packed array [1..50] of char;

 author: packed array [1..50] of char;
 subject: packed array [1..100] of char;
 book_id: integer;
end;

TUTORIALS POINT

Simply Easy Learning Page 102

The record variables are defined in the usual way as:

Alternatively, you can directly define a record type variable as:

Accessing Fields of a Record

To access any field of a record, we use the member access operator (.). The member
access operator is coded as a period between the record variable name and the field that
we wish to access. Following is the example to explain usage of structure:

var

 r1, r2, ... : record-name;

var
Books : record
 title: packed array [1..50] of char;
 author: packed array [1..50] of char;
 subject: packed array [1..100] of char;
 book_id: integer;

end;

program exRecords;
type
Books = record
 title: packed array [1..50] of char;
 author: packed array [1..50] of char;

 subject: packed array [1..100] of char;

 book_id: longint;
end;
var
 Book1, Book2: Books; (* Declare Book1 and Book2 of type Books *)
begin
 (* book 1 specification *)
 Book1.title := 'C Programming';

 Book1.author := 'Nuha Ali ';
 Book1.subject := 'C Programming Tutorial';
 Book1.book_id := 6495407;

TUTORIALS POINT

Simply Easy Learning Page 103

When the above code is compiled and executed, it produces following result:

Records as Subprogram Arguments

You can pass a record as a subprogram argument in very similar way as you pass any
other variable or pointer. You would access the record fields in the similar way as you have
accessed in the above example:

 (* book 2 specification *)
 Book2.title := 'Telecom Billing';
 Book2.author := 'Zara Ali';

 Book2.subject := 'Telecom Billing Tutorial';
 Book2.book_id := 6495700;

 (* print Book1 info *)
 writeln ('Book 1 title : ', Book1.title);
 writeln('Book 1 author : ', Book1.author);

 writeln('Book 1 subject : ', Book1.subject);
 writeln('Book 1 book_id : ', Book1.book_id);
 writeln;

 (* print Book2 info *)

 writeln ('Book 2 title : ', Book2.title);
 writeln('Book 2 author : ', Book2.author);

 writeln('Book 2 subject : ', Book2.subject);
 writeln('Book 2 book_id : ', Book2.book_id);
end.

Book 1 title : C Programming
Book 1 author : Nuha Ali
Book 1 subject : C Programming Tutorial
Book 1 book_id : 6495407

Book 2 title : Telecom Billing
Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial
Book 2 book_id : 6495700

program exRecords;
type
Books = record

 title: packed array [1..50] of char;

 author: packed array [1..50] of char;
 subject: packed array [1..100] of char;
 book_id: longint;
end;
var

 Book1, Book2: Books; (* Declare Book1 and Book2 of type Books *)

TUTORIALS POINT

Simply Easy Learning Page 104

When the above code is compiled and executed, it produces following result:

Pointers to Records

You can define pointers to records in very similar way as you define pointer to any other
variable as follows:

(* procedure declaration *)
procedure printBook(var book: Books);
begin
 (* print Book info *)

 writeln ('Book title : ', book.title);
 writeln('Book author : ', book.author);
 writeln('Book subject : ', book.subject);
 writeln('Book book_id : ', book.book_id);
end;

begin

 (* book 1 specification *)
 Book1.title := 'C Programming';

 Book1.author := 'Nuha Ali ';
 Book1.subject := 'C Programming Tutorial';
 Book1.book_id := 6495407;

 (* book 2 specification *)

 Book2.title := 'Telecom Billing';
 Book2.author := 'Zara Ali';
 Book2.subject := 'Telecom Billing Tutorial';
 Book2.book_id := 6495700;

 (* print Book1 info *)

 printbook(Book1);
 writeln;

 (* print Book2 info *)
 printbook(Book2);

end.

Book 1 title : C Programming
Book 1 author : Nuha Ali
Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing
Book 2 author : Zara Ali
Book 2 subject : Telecom Billing Tutorial
Book 2 book_id : 6495700

TUTORIALS POINT

Simply Easy Learning Page 105

Now you can store the address of a record type variable in the above defined pointer
variable. To declare a variable of the created pointer type, you use the var keyword:

Before using these pointers, you must create storage for a record-name type variable,
which will be manipulated by these pointers.

To access the members of a record using a pointer to that record, you must use the ^.
operator as follows:

Finally don't forget to dispose the used storage, when it is no longer in use:

Let us re-write the first example using a pointer to the Books record. Hope this will be easy

for you to understand the concept:

type

record-ptr = ^ record-name;
record-name = record
 field-1: field-type1;
 field-2: field-type2;
 ...
 field-n: field-typen;
end;

var

 r1, r2, ... : record-ptr;

new(r1);

new(r2);

r1^.feild1 := value1;

r1^.feild2 := value2;
...

r1^fieldn := valuen;

dispose(r1);
dispose(r2);

program exRecords;
type
BooksPtr = ^ Books;
Books = record

 title: packed array [1..50] of char;
 author: packed array [1..50] of char;

 subject: packed array [1..100] of char;
 book_id: longint;
end;
var
 (* Declare Book1 and Book2 of pointer type that refers to Book type *)
 Book1, Book2: BooksPtr;

TUTORIALS POINT

Simply Easy Learning Page 106

When the above code is compiled and executed, it produces following result:

The With Statement

We have discussed that the members of a record can be accessed using the member

access operator (.). This way the name of the record variable has to be written every time.
The With statement provides an alternative way to do that.

Look at the following code snippet taken from our first example:

begin

 new(Book1);
 new(book2);
 (* book 1 specification *)
 Book1^.title := 'C Programming';
 Book1^.author := 'Nuha Ali ';
 Book1^.subject := 'C Programming Tutorial';
 Book1^.book_id := 6495407;

 (* book 2 specification *)
 Book2^.title := 'Telecom Billing';
 Book2^.author := 'Zara Ali';
 Book2^.subject := 'Telecom Billing Tutorial';
 Book2^.book_id := 6495700;

 (* print Book1 info *)
 writeln ('Book 1 title : ', Book1^.title);
 writeln('Book 1 author : ', Book1^.author);
 writeln('Book 1 subject : ', Book1^.subject);
 writeln('Book 1 book_id : ', Book1^.book_id);

 (* print Book2 info *)
 writeln ('Book 2 title : ', Book2^.title);
 writeln('Book 2 author : ', Book2^.author);
 writeln('Book 2 subject : ', Book2^.subject);
 writeln('Book 2 book_id : ', Book2^.book_id);
 dispose(Book1);
 dispose(Book2);

end.

Book 1 title : C Programming

Book 1 author : Nuha Ali
Book 1 subject : C Programming Tutorial
Book 1 book_id : 6495407

Book 2 title : Telecom Billing
Book 2 author : Zara Ali
Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

TUTORIALS POINT

Simply Easy Learning Page 107

The same assignment could be written using the With statement as:

(* book 1 specification *)
 Book1.title := 'C Programming';
 Book1.author := 'Nuha Ali ';
 Book1.subject := 'C Programming Tutorial';

 Book1.book_id := 6495407;

(* book 1 specification *)

With Book1 do
begin
 title := 'C Programming';
 author := 'Nuha Ali ';

 subject := 'C Programming Tutorial';
 book_id := 6495407;
end;

TUTORIALS POINT

Simply Easy Learning Page 108

Variants

This section shows a unique type of storage named variants supported by Pascal.

P ascal supports a unique type of storage named variants. You can assign any

simple type of values in a variant variable. The type of a value stored in a variant is only
determined at runtime. Almost any simple type can be assigned to variants: ordinal types,
string types, int64 types. Structured types such as sets, records, arrays, files, objects and
classes are not assignment-compatible with a variant. You can also assign a pointer to a
variant. Free Pascal supports variants.

Declaring a Variant

You can declare variant type like any other types using the var keyword. The syntax for
declaring a variant type is:

Now this variant variable v can be assigned to almost all simple types including the
enumerated types and vice versa.

CHAPTER

19

var
 v: variant;

type
 color = (red, black, white);
var

 v : variant;
 i : integer;

 b : byte;
 w : word;
 en : color;
 as : ansistring;
 ws : widestring;

begin
 v := i;
 v := b;
 v := w;
 v := en;
 v := as;
 v := ws;

end;

TUTORIALS POINT

Simply Easy Learning Page 109

Example:

The following example would illustrate the concept:

When the above code is compiled and executed, it produces following result:

Program exVariant;
uses variants;
type

 color = (red, black, white);
var
 v : variant;
 i : integer;
 r: real;
 c : color;

 as : ansistring;

begin
 i := 100;
 v:= i;
 writeln('Variant as Integer: ', v);

 r:= 234.345;

 v:= r;
 writeln('Variant as real: ', v);

c := red;

 v := c;
 writeln('Variant as Enumerated data: ', v);

 as:= ' I am an AnsiString';

 v:= as;
 writeln('Variant as AnsiString: ', v);
 end.

Variant as Integer: 100
Variant as real: 234.345
Variant as Enumerated data: 0

Variant as AnsiString: I am an AnsiString

TUTORIALS POINT

Simply Easy Learning Page 110

Sets

This section explains sets which is a collection of elements of same type.

A set is a collection of elements of same type. Pascal allows defining the set data

type. The elements in a set are called its members. In mathematics, sets are represented
by enclosing the members within braces{}. However, in Pascal, set elements are enclosed
within square brackets [], which are referred as set constructor.

Defining Set Types and Variables

Pascal Set types are defined as

Variables of set type are defined as

or,

CHAPTER

20

type
set-identifier = set of base type;

var

s1, s2, ...: set-identifier;

type
Days = (mon, tue, wed, thu, fri, sat, sun);
Letters = set of char;

DaySet = set of days;
Alphabets = set of 'A' .. 'Z';
studentAge = set of 13..20;

TUTORIALS POINT

Simply Easy Learning Page 111

Set Operators

You can perform the following set operations on Pascal sets.

Operations Descriptions

Union This joins two sets and gives a new set with members from both sets.

Difference Gets the difference of two sets and gives a new set with elements not
common to either set.

Intersection Gets the intersection of two sets and gives a new set with elements
common to both sets.

Inclusion A set P is included in set Q, if all items in P are also in Q but not vice

versa.

Symmetric
difference

Gets the symmetric difference of two sets and gives a set of elements
which are in either of the sets and not in their intersection.

In It checks membership

Following table shows all the set operators supported by Free Pascal. Assume that S1 and

S2 are two character sets, such that:

S1 := ['a', 'b', 'c'];
S2 := ['c', 'd', 'e'];

Operator Description Example

+ Union of two sets S1 + S2 will give a set
['a', 'b', 'c', 'd', 'e']

_ Difference of two sets S1 - S2 will give a set
['a', 'b']

* Intersection of two sets S1 * S2 will give a set
['c']

>< Symmetric difference of two sets S1 >< S2 will give a set ['a',
'b', 'd', 'e']

= Gets the symmetric difference of two sets
and gives a set of elements which are in
either of the sets and not in their
intersection.

S1 = S2 will give the boolean
value False

<> Checks equality of two sets S1 <> S2 will give the boolean
value True

TUTORIALS POINT

Simply Easy Learning Page 112

<= Contains(Checks if one set is a subset of
the other)

S1 <= S2 will give the boolean
value False

Include Includes an element in the set; basically it
is the Union of a set and an element of
same base type

Include (S1, ['d']) will give a
set
['a', 'b', 'c', 'd']

Exclude Excludes an element from a set; basically
it is the Difference of a set and an element
of same base type

Exclude (S2, ['d']) will give a
set
['c', 'e']

In Checks set membership of an element in a
set

['e'] in S2 gives the boolean
value True

Example:

The following example illustrates the use of some of these operators:

program setColors;

type
color = (red, blue, yellow, green, white, black, orange);
colors = set of color;

procedure displayColors(c : colors);
const
names : array [color] of String[7]

 = ('red', 'blue', 'yellow', 'green', 'white', 'black', 'orange');

var
 cl : color;
 s : String;
begin
 s:= ' ';

 for cl:=red to orange do
 if cl in c then
 begin
 if (s<>' ') then s :=s +' , ';
 s:=s+names[cl];
 end;
 writeln('[',s,']');

end;

var
 c : colors;

begin
 c:= [red, blue, yellow, green, white, black, orange];
 displayColors(c);

 c:=[red, blue]+[yellow, green];
 displayColors(c);

TUTORIALS POINT

Simply Easy Learning Page 113

When the above code is compiled and executed, it produces following result:

 c:=[red, blue, yellow, green, white, black, orange] - [green, white];
 displayColors(c);

 c:= [red, blue, yellow, green, white, black, orange]*[green, white];
 displayColors(c);

 c:= [red, blue, yellow, green]><[yellow, green, white, black];
 displayColors(c);
end.

[red , blue , yellow , green , white , black , orange]
[red , blue , yellow , green]
[red , blue , yellow , black , orange]
[green , white]

[red , blue , white , black]

TUTORIALS POINT

Simply Easy Learning Page 114

File Handling

This section shows File Handling in Pascal:

P ascal treats a file as a sequence of components which must be of uniform type. A

file's type is determined by the type of the components. File data type is defined as:

Where, the base-type indicates the type of the components of the file. The base type
could be anything like, integer, real, Boolean, enumerated, subrange, record, arrays and
sets except another file type. Variables of a file type are created using the var declaration:

Following are some examples of defining some file types and file variables:

CHAPTER

21

type
file-name = file of base-type;

var
f1, f2,...: file-name;

type
 rfile = file of real;
 ifile = file of integer;

 bfile = file of boolean;
 datafile = file of record
 arrfile = file of array[1..4] of integer;
var
 marks: arrfile;
 studentdata: datafile;

 rainfalldata: rfile;

 tempdata: ifile;
 choices: bfile;

TUTORIALS POINT

Simply Easy Learning Page 115

Creating and Writing to a File
Let us write a program that would create a data file for students' records. It would create
a file named students.dat and write a student's data into it:

When compiled and run, the program would create a file named students.dat into the
working directory. You can open the file using a text editor, like notepad, to look at John
Smith's data.

Reading from a File

We have just created and written into a file named students.dat. Now let us write a
program that would read the student's data from the file:

program DataFiles;
type
 StudentRecord = Record
 s_name: String;
 s_addr: String;
 s_batchcode: String;
 end;

var

 Student: StudentRecord;
 f: file of StudentRecord;
begin
 Assign(f,'students.dat');
 Rewrite(f);

 Student.s_name := 'John Smith';
 Student.s_addr := 'United States of America';
 Student.s_batchcode := 'Computer Science';
 Write(f,Student);
 Close(f);
end.

program DataFiles;
type
 StudentRecord = Record

 s_name: String;
 s_addr: String;
 s_batchcode: String;
 end;
var
 Student: StudentRecord;

 f: file of StudentRecord;
begin
 assign(f, 'students.dat');
 reset(f);
 while not eof(f) do
 begin
 read(f,Student);

 writeln('Name: ',Student.s_name);
 writeln('Address: ',Student.s_addr);
 writeln('Batch Code: ', Student.s_batchcode);
 end;
 close(f);
end.

TUTORIALS POINT

Simply Easy Learning Page 116

When the above code is compiled and executed, it produces following result:

Files as Subprogram Parameter

Pascal allows file variables to be used as parameters in standard and user defined

subprograms. The following example illustrates this concept. The program creates a file
named rainfall.txt, and stores some rainfall data. Next, it opens the file, reads the data
and computes the average rainfall.
Please note that, if you use a file parameter with subprograms, it must be declared
as a var parameter.

Name: John Smith

Address: United States of America

Batch Code: Computer Science

program addFiledata;
const
 MAX = 4;

type
 raindata = file of real;
var
 rainfile: raindata;
 filename: string;
procedure writedata(var f: raindata);
var

 data: real;
 i: integer;
begin
 rewrite(f, sizeof(data));

 for i:=1 to MAX do
 begin
 writeln('Enter rainfall data: ');

 readln(data);
 write(f, data);
 end;
 close(f);
end;
procedure computeAverage(var x: raindata);

var
 d, sum: real;
 average: real;
begin
 reset(x);
 sum:= 0.0;

 while not eof(x) do

 begin
 read(x, d);
 sum := sum + d;
 end;
 average := sum/MAX;
 close(x);
 writeln('Average Rainfall: ', average:7:2);

end;

TUTORIALS POINT

Simply Easy Learning Page 117

When the above code is compiled and executed, it produces following result:

Text Files

A text file, in Pascal, consists of lines of characters where each line is terminated with an end-of-

line marker. You can declare and define such files as:

Difference between a normal file of characters and a text file is that a text file is divided into
lines, each terminated by a special end-of-line marker, automatically inserted by the system. The
following example creates and writes into a text file named contact.txt:

begin

 writeln('Enter the File Name: ');
 readln(filename);
 assign(rainfile, filename);

 writedata(rainfile);
 computeAverage(rainfile);
end.

Enter the File Name:
rainfall.txt
Enter rainfall data:

34
Enter rainfall data:
45

Enter rainfall data:
56
Enter rainfall data:

78
Average Rainfall: 53.25

type
file-name = text;

program exText;
var
 filename, data: string;
 myfile: text;
begin
 writeln('Enter the file name: ');
 readln(filename);

 assign(myfile, filename);
 rewrite(myfile);
 writeln(myfile, 'Note to Students: ');

 writeln(myfile, 'For details information on Pascal Programming');
 writeln(myfile, 'Contact: Tutorials Point');
 writeln('Completed writing');
 close(myfile);

end.

TUTORIALS POINT

Simply Easy Learning Page 118

When the above code is compiled and executed, it produces following result:

Appending to a File

Appending to a file means writing to an existing file that already has some data without
overwriting the file. The following program illustrates this:

When the above code is compiled and executed, it produces following result:

File Handling Functions

Free Pascal provides the following functions/procedures for file handling:

Enter the file name:
contact.txt
Completed writing

program exAppendfile;

var
 myfile: text;
 info: string;
begin

 assign(myfile, 'contact.txt');
 append(myfile);
 writeln('Contact Details');
 writeln('webmaster@tutorialspoint.com');
 close(myfile);
 (* let us read from this file *)
 assign(myfile, 'contact.txt');

 reset(myfile);
 while not eof(myfile) do
 begin
 readln(myfile, info);
 writeln(info);

 end;

 close(myfile);
end.

Contact Details

webmaster@tutorialspoint.com
Note to Students:
For details information on Pascal Programming
Contact: Tutorials Point

TUTORIALS POINT

Simply Easy Learning Page 119

S.N. Function Name & Description

1 procedure Append(var t: Text);

Open a file in append mode

2 procedure Assign(out f: file; const Name:);

Assign a name to a file

3 procedure Assign(out f: file; p: PChar);

Assign a name to a file

4 procedure Assign(out f: file; c: Char);

Assign a name to a file

5 procedure Assign(out f: TypedFile; const Name:);

Assign a name to a file

6 procedure Assign(out f: TypedFile; p: PChar);

Assign a name to a file

7 procedure Assign(out f: TypedFile; c: Char);

Assign a name to a file

8 procedure Assign(out t: Text; const s:);

Assign a name to a file

9 procedure Assign(out t: Text; p: PChar);

Assign a name to a file

10 procedure Assign(out t: Text; c: Char);

Assign a name to a file

11 procedure BlockRead(var f: file; var Buf; count: Int64; var Result: Int64
);

Read data from a file into memory

12 procedure BlockRead(var f: file; var Buf; count: LongInt; var Result:
LongInt);

Read data from a file into memory

13 procedure BlockRead(var f: file; var Buf; count: Cardinal; var Result:
Cardinal);

TUTORIALS POINT

Simply Easy Learning Page 120

Read data from a file into memory

14 procedure BlockRead(var f: file; var Buf; count: Word; var Result: Word);

Read data from a file into memory

15 procedure BlockRead(var f: file; var Buf; count: Word; var Result: Integer
);

Read data from a file into memory

16 procedure BlockRead(var f: file; var Buf; count: Int64);

Read data from a file into memory

17 procedure BlockWrite(var f: file; const Buf; Count: Int64; var Result:
Int64);

Write data from memory to a file

18 procedure BlockWrite(var f: file; const Buf; Count: LongInt; var Result:
LongInt);

Write data from memory to a file

19 procedure BlockWrite(var f: file; const Buf; Count: Cardinal; var Result:
Cardinal);

Write data from memory to a file

20 procedure BlockWrite(var f: file; const Buf; Count: Word; var Result:
Word);

Write data from memory to a file

21 procedure BlockWrite(var f: file; const Buf; Count: Word; var Result:
Integer);

Write data from memory to a file

22 procedure BlockWrite(var f: file; const Buf; Count: LongInt);

Write data from memory to a file

23 procedure Close(var f: file);

Close a file

24 procedure Close(var t: Text);

Close a file

25 function EOF(var f: file):Boolean;

Check for end of file

TUTORIALS POINT

Simply Easy Learning Page 121

26 function EOF(var t: Text):Boolean;

Check for end of file

27 function EOF: Boolean;

Check for end of file

28 function EOLn(var t: Text):Boolean;

Check for end of line

29 function EOLn: Boolean;

Check for end of line

30 procedure Erase(var f: file);

Delete file from disk

31 procedure Erase(var t: Text);

Delete file from disk

32 function FilePos(var f: file):Int64;

Position in file

33 function FileSize(var f: file):Int64;

Size of file

34 procedure Flush(var t: Text);

Write file buffers to disk

35 function IOResult: Word;

Return result of last file IO operation

36 procedure Read(var F: Text; Args: Arguments);

Read from file into variable

37 procedure Read(Args: Arguments);

Read from file into variable

38 procedure ReadLn(var F: Text; Args: Arguments);

Read from file into variable and goto next line

39 procedure ReadLn(Args: Arguments);

TUTORIALS POINT

Simply Easy Learning Page 122

Read from file into variable and goto next line

40 procedure Rename(var f: file; const s:);

Rename file on disk

41 procedure Rename(var f: file; p: PChar);

Rename file on disk

42 procedure Rename(var f: file; c: Char);

Rename file on disk

43 procedure Rename(var t: Text; const s:);

Rename file on disk

44 procedure Rename(var t: Text; p: PChar);

Rename file on disk

45 procedure Rename(var t: Text; c: Char);

Rename file on disk

46 procedure Reset(var f: file; l: LongInt);

Open file for reading

47 procedure Reset(var f: file);

Open file for reading

48 procedure Reset(var f: TypedFile);

Open file for reading

49 procedure Reset(var t: Text);

Open file for reading

50 procedure Rewrite(var f: file; l: LongInt);

Open file for writing

51 procedure Rewrite(var f: file);

Open file for writing

52 procedure Rewrite(var f: TypedFile);

Open file for writing

TUTORIALS POINT

Simply Easy Learning Page 123

53 procedure Rewrite(var t: Text);

Open file for writing

54 procedure Seek(var f: file; Pos: Int64);

Set file position

55 function SeekEOF(var t: Text):Boolean;

Set file position to end of file

56 function SeekEOF: Boolean;

Set file position to end of file

57 function SeekEOLn(var t: Text):Boolean;

Set file position to end of line

58 function SeekEOLn: Boolean;

Set file position to end of line

59 procedure SetTextBuf(var f: Text; var Buf);

Set size of file buffer

60 procedure SetTextBuf(var f: Text; var Buf; Size: SizeInt);

Set size of file buffer

61 procedure Truncate(var F: file);

Truncate the file at position

62 procedure Write(Args: Arguments);

Write variable to file

63 procedure Write(var F: Text; Args: Arguments);

Write variable to file

64 procedure Writeln(Args: Arguments);

Write variable to file and append newline

65 procedure WriteLn(var F: Text; Args: Arguments);

Write variable to file and append newline

TUTORIALS POINT

Simply Easy Learning Page 124

Memory Management

This section explains dynamic memory management in Pascal.

P ascal programming language provides several functions for memory allocation and

management.

Allocating Memory Dynamically

While doing programming, if you are aware about the size of an array, then it is easy and
you can define it as an array. For example to store a name of any person, it can go max
100 characters so you can define something as follows:

But now let us consider a situation where you have no idea about the length of the text
you need to store, for example you want to store a detailed description about a topic.
Here we need to define a pointer to string without defining how much memory is required.
Pascal provides a procedure new to create pointer variables.

CHAPTER

22

var
name: array[1..100] of char;

program exMemory;
var

name: array[1..100] of char;
description: ^string;
begin
 name:= 'Zara Ali';

 new(description);
 if not assigned(description) then

 writeln(' Error - unable to allocate required memory')
 else
 description^ := 'Zara ali a DPS student in class 10th';
 writeln('Name = ', name);
 writeln('Description: ', description^);
end.

TUTORIALS POINT

Simply Easy Learning Page 125

When the above code is compiled and executed, it produces following result:

Now, if you need to define a pointer with specific number of bytes to be referred by it
later, you should use the getmem function or the getmem procedure, which has the
following syntax:

In the previous example, we declared a pointer to a string. A string has a maximum
value of 255 bytes. If you really don't need that much space, or a larger space, in terms
of bytes, getmem subprogram allows specifying that. Let us rewrite the previous
example, using getmem:

When the above code is compiled and executed, it produces following result:

So you have complete control and you can pass any size value while allocating memory
unlike arrays where once you defined the size cannot be changed.

Name = Zara Ali
Description: Zara ali a DPS student in class 10th

procedure Getmem(
 out p: pointer;
 Size: PtrUInt
);

function GetMem(
 size: PtrUInt
):pointer;

program exMemory;

var
name: array[1..100] of char;
description: ^string;
begin
 name:= 'Zara Ali';

 description := getmem(200);
 if not assigned(description) then

 writeln(' Error - unable to allocate required memory')
 else
 description^ := 'Zara ali a DPS student in class 10th';
 writeln('Name = ', name);
 writeln('Description: ', description^);
 freemem(description);

end.

Name = Zara Ali

Description: Zara ali a DPS student in class 10th

TUTORIALS POINT

Simply Easy Learning Page 126

Resizing and Releasing Memory

When your program comes out, operating system automatically release all the memory

allocated by your program but as a good practice when you are not in need of memory
anymore then you should release that memory.

Pascal provides the procedure dispose to free a dynamically created variable using the
procedure new. If you have allocated memory using the getmemsubprogram, then you
need to use the subprogram freemem to free this memory. The freemem subprograms
have the following syntax:

Alternatively, you can increase or decrease the size of an allocated memory block by
calling the function ReAllocMem. Let us check the above program once again and make
use of ReAllocMem and freemem subprograms. Following is the syntax for ReAllocMem:

Following is an example which makes use of ReAllocMem and freemem subprograms:

procedure Freemem(
 p: pointer;

 Size: PtrUInt
);

function Freemem(

 p: pointer
):PtrUInt;

function ReAllocMem(

 var p: pointer;
 Size: PtrUInt

):pointer;

program exMemory;
var
name: array[1..100] of char;
description: ^string;
desp: string;

begin
 name:= 'Zara Ali';
 desp := 'Zara ali a DPS student.';
 description := getmem(30);
 if not assigned(description) then
 writeln('Error - unable to allocate required memory')

 else

 description^ := desp;
(* Suppose you want to store bigger description *)
 description := reallocmem(description, 100);
 desp := desp + ' She is in class 10th.';
 description^:= desp;
 writeln('Name = ', name);

 writeln('Description: ', description^);
 freemem(description);
end.

TUTORIALS POINT

Simply Easy Learning Page 127

When the above code is compiled and executed, it produces following result:

Memory Management Functions

Pascal provides a hoard of memory management functions that is used in implementing

various data structures and implementing low level programming in Pascal. Many of these
functions are implementation dependent. Free Pascal provides the following functions and
procedure for memory management:

S.N. Function Name & Description

1 function Addr(X: TAnytype):Pointer;

Return address of variable

2 function Assigned(P: Pointer):Boolean;

Check if a pointer is valid

3 function CompareByte(const buf1; const buf2; len: SizeInt):SizeInt;

Compare 2 memory buffers byte per byte

4 function CompareChar(const buf1; const buf2; len: SizeInt):SizeInt;

Compare 2 memory buffers byte per byte

5 function CompareDWord(const buf1; const buf2; len: SizeInt):SizeInt;

Compare 2 memory buffers byte per byte

6 function CompareWord(const buf1; const buf2; len: SizeInt):SizeInt;

Compare 2 memory buffers byte per byte

7 function Cseg: Word;

Return code segment

8 procedure Dispose(P: Pointer);

Free dynamically allocated memory

9 procedure Dispose(P: TypedPointer; Des: TProcedure);

Name = Zara Ali

Description: Zara ali a DPS student. She is in class 10th

Name = Zara Ali
Description: Zara ali a DPS student. She is in class 10th

TUTORIALS POINT

Simply Easy Learning Page 128

Free dynamically allocated memory

10 function Dseg: Word;

Return data segment

11 procedure FillByte(var x; count: SizeInt; value: Byte);

Fill memory region with 8-bit pattern

12 procedure FillChar(var x; count: SizeInt; Value: Byte|Boolean|Char);

Fill memory region with certain character

13 procedure FillDWord(var x; count: SizeInt; value: DWord);

Fill memory region with 32-bit pattern

14 procedure FillQWord(var x; count: SizeInt; value: QWord);

Fill memory region with 64-bit pattern

15 procedure FillWord(var x; count: SizeInt; Value: Word);

Fill memory region with 16-bit pattern

16 procedure Freemem(p: pointer; Size: PtrUInt);

Release allocated memory

17 procedure Freemem(p: pointer);

Release allocated memory

18 procedure Getmem(out p: pointer; Size: PtrUInt);

Allocate new memory

19 procedure Getmem(out p: pointer);

Allocate new memory

20 procedure GetMemoryManager(var MemMgr: TMemoryManager);

Return current memory manager

21 function High(Arg: TypeOrVariable):TOrdinal;

Return highest index of open array or enumerate

22 function IndexByte(const buf; len: SizeInt; b: Byte):SizeInt;

Find byte-sized value in a memory range

TUTORIALS POINT

Simply Easy Learning Page 129

23 function IndexChar(const buf; len: SizeInt; b: Char):SizeInt;

Find char-sized value in a memory range

24 function IndexDWord(const buf; len: SizeInt; b: DWord):SizeInt;

Find DWord-sized (32-bit) value in a memory range

25 function IndexQWord(const buf; len: SizeInt; b: QWord):SizeInt;

Find QWord-sized value in a memory range

26 function Indexword(const buf; len: SizeInt; b: Word):SizeInt;

Find word-sized value in a memory range

27 function IsMemoryManagerSet: Boolean;

Is the memory manager set

28 function Low(Arg: TypeOrVariable):TOrdinal;

Return lowest index of open array or enumerated

29 procedure Move(const source; var dest; count: SizeInt);

Move data from one location in memory to another

30 procedure MoveChar0(const buf1; var buf2; len: SizeInt);

Move data till first zero character

31 procedure New(var P: Pointer);

Dynamically allocate memory for variable

32 procedure New(var P: Pointer; Cons: TProcedure);

Dynamically allocate memory for variable

33 function Ofs(var X):LongInt;

Return offset of variable

34 function ptr(sel: LongInt; off: LongInt):farpointer;

Combine segment and offset to pointer

35 function ReAllocMem(var p: pointer; Size: PtrUInt):pointer;

Resize a memory block on the heap

36 function Seg(var X):LongInt;

TUTORIALS POINT

Simply Easy Learning Page 130

Return segment

37 procedure SetMemoryManager(const MemMgr: TMemoryManager);

Set a memory manager

38 function Sptr: Pointer;

Return current stack pointer

39 function Sseg: Word;

Return stack segment register value

TUTORIALS POINT

Simply Easy Learning Page 131

Units

This section shows the units used in a Pascal program:

A Pascal program can consist of modules called units. A unit might consist of some

code blocks which in turn are made up of variables and type declarations, statements,
procedures etc. There are many built-in units in Pascal and Pascal allows programmers to
define and write their own units to be used later in various programs.

Using Built-in Units

Both the built-in units and user defined units are included in a program by the uses
clause. We have already used the variants unit in the Pascal - Variants tutorial. This
tutorial explains creating and including user-defined units. However, let us first see how to
include a built-in unit crt in your program:

The following example illustrates using the crt unit:

CHAPTER

23

program myprog;
uses crt;

Program Calculate_Area (input, output);
uses crt;
var
 a, b, c, s, area: real;

begin

 textbackground(white); (* gives a white background *)
 clrscr; (*clears the screen *)
 textcolor(green); (* text color is green *)
 gotoxy(30, 4); (* takes the pointer to the 4th line and 30th column)
 writeln('This program calculates area of a triangle:');
 writeln('Area = area = sqrt(s(s-a)(s-b)(s-c))');

 writeln('S stands for semi-perimeter');
 writeln('a, b, c are sides of the triangle');
 writeln('Press any key when you are ready');

TUTORIALS POINT

Simply Easy Learning Page 132

It is the same program we used right at the beginning of the Pascal tutorial, compile and
run it to find the effects of the change.

Creating and Using a Pascal Unit

To create a unit, you need to write the modules, or subprograms you want to store in it

and save it in a file with .pas extension. The first line of this file should start with the
keyword unit followed by the name of the unit. For example:

Following are three important steps in creating a Pascal unit:

 The name of the file and the name of the unit should be exactly same. So our unit
calculateArea will be saved in a file named calculateArea.pas

 The next line should consist of a single keyword interface. After this line, you will
write the declarations for all the functions and procedures that will come in this
unit.

 Right after the function declarations, write the word implementation, which is
again a keyword. After the line containing the keyword implementation, provide
definition of all the subprograms.

The following program creates the unit named calculateArea:

readkey;
 clrscr;
 gotoxy(20,3);

 write('Enter a: ');
 readln(a);
 gotoxy(20,5);
 write('Enter b:');
 readln(b);
 gotoxy(20, 7);

 write('Enter c: ');
 readln(c);

 s := (a + b + c)/2.0;
 area := sqrt(s * (s - a)*(s-b)*(s-c));

 gotoxy(20, 9);
 writeln('Area: ',area:10:3);

 readkey;
end.

unit calculateArea;

TUTORIALS POINT

Simply Easy Learning Page 133

Next, let us write a simple program that would use the unit we defined above:

unit CalculateArea;

interface
function RectangleArea(length, width: real): real;
function CircleArea(radius: real) : real;
function TriangleArea(side1, side2, side3: real): real;

implementation
function RectangleArea(length, width: real): real;

begin
 RectangleArea := length * width;
end;

function CircleArea(radius: real) : real;
const

 PI = 3.14159;
begin
 CircleArea := PI * radius * radius;
end;

function TriangleArea(side1, side2, side3: real): real;
var

 s, area: real;
begin
 s := (side1 + side2 + side3)/2.0;
 area := sqrt(s * (s - side1)*(s-side2)*(s-side3));
 TriangleArea := area;
end;
end.

program AreaCalculation;
uses CalculateArea,crt;

var
 l, w, r, a, b, c, area: real;

begin
 clrscr;
 l := 5.4;
 w := 4.7;
 area := RectangleArea(l, w);
 writeln('Area of Rectangle 5.4 x 4.7 is: ', area:7:3);
r:= 7.0;

 area:= CircleArea(r);

 writeln('Area of Circle with radius 7.0 is: ', area:7:3);
 a := 3.0;
 b:= 4.0;
 c:= 5.0;
 area:= TriangleArea(a, b, c);

 writeln('Area of Triangle 3.0 by 4.0 by 5.0 is: ', area:7:3);
end.

TUTORIALS POINT

Simply Easy Learning Page 134

When the above code is compiled and executed, it produces following result:

Area of Rectangle 5.4 x 4.7 is: 25.380
Area of Circle with radius 7.0 is: 153.938
Area of Triangle 3.0 by 4.0 by 5.0 is: 6.000

TUTORIALS POINT

Simply Easy Learning Page 135

Date Time

This section shows various date and time functions:

M ost of the software you write needs implementing some form of date functions

returning current date and time. Dates are so much part of everyday life that it becomes
easy to work with them without thinking. Pascal also provides powerful tools for date
arithmetic that makes manipulating dates easy. However, the actual name and workings
of these functions are different for different compilers.

Getting the Current Date & Time:

Pascal's TimeToString function gives you the current time in a colon(:) delimited form.
The following example shows how to get the current time:

When the above code was compiled and executed, it produced following result:

The Date function returns the current date in TDateTime format. The TDateTime is a
double value, which needs some decoding and formatting. The following program
demonstrates how to use it in your program to display the current date:

CHAPTER

24

program TimeDemo;
uses sysutils;
begin
 writeln ('Current time : ',TimeToStr(Time));
end.

Current time : 18:33:08

TUTORIALS POINT

Simply Easy Learning Page 136

When the above code was compiled and executed, it produced following result:

The Now function returns the current date and time:

When the above code was compiled and executed, it produced following result:

Free Pascal provides a simple time stamp structure named TTimeStamp, which has the
following format:

Various Date & Time Functions:

 Free Pascal provides the following date and time functions:

S.N. Function Name & Description

1 function DateTimeToFileDate(DateTime: TDateTime):LongInt;

Convert DateTime type to file date.

Date: 4.111300000000000E+004
Today is (DD/MM/YY):23/7/2012

Program DatenTimeDemo;
uses sysutils;

begin
 writeln ('Date and Time at the time of writing : ',DateTimeToStr(Now));
end.

Date and Time at the time of writing : 23/7/2012 18:51:

type TTimeStamp = record

 Time: Integer;

 Date: Integer;

end;

Program DateDemo;
uses sysutils;
var
 YY,MM,DD : Word;
begin
 writeln ('Date : ',Date);

 DeCodeDate (Date,YY,MM,DD);
 writeln (format ('Today is (DD/MM/YY): %d/%d/%d ',[dd,mm,yy]));
 end.

TUTORIALS POINT

Simply Easy Learning Page 137

2 function DateTimeToStr(DateTime: TDateTime):;

Construct string representation of DateTime

3 function DateTimeToStr(DateTime: TDateTime; const FormatSettings:
TFormatSettings):;

Construct string representation of DateTime

4 procedure DateTimeToString(out Result: ;const FormatStr: ;const
DateTime: TDateTime);

Construct string representation of DateTime

5 procedure DateTimeToString(out Result: ; const FormatStr: ; const
DateTime: TDateTime; const FormatSettings: TFormatSettings);

Construct string representation of DateTime

6 procedure DateTimeToSystemTime(DateTime: TDateTime; out
SystemTime: TSystemTime);

Convert DateTime to system time

7 function DateTimeToTimeStamp(DateTime: TDateTime):TTimeStamp

Convert DateTime to timestamp

8 function DateToStr(Date: TDateTime):;

Construct string representation of date

9 function DateToStr(Date: TDateTime; const FormatSettings:
TFormatSettings):;

Construct string representation of date

10 function Date: TDateTime;

Get current date

11 function DayOfWeek(DateTime: TDateTime):Integer;

Get day of week

12 procedure DecodeDate(Date: TDateTime; out Year: Word; out Month:
Word; out Day: Word);

Decode DateTime to year month and day

13 procedure DecodeTime(Time: TDateTime; out Hour: Word; out Minute:
Word; out Second: Word; out MilliSecond: Word);

Decode DateTime to hours, minutes and seconds

TUTORIALS POINT

Simply Easy Learning Page 138

14 function EncodeDate(Year: Word; Month: Word; Day: Word):TDateTime;

Encode year, day and month to DateTime

15 function EncodeTime(Hour: Word; Minute: Word; Second: Word;
MilliSecond: Word):TDateTime;

Encode hours, minutes and seconds to DateTime

16 function FormatDateTime(const FormatStr: ; DateTime: TDateTime):;

Return string representation of DateTime

17 function FormatDateTime(const FormatStr: ; DateTime: TDateTime; const
FormatSettings: TFormatSettings):;

Return string representation of DateTime

18 function IncMonth(const DateTime: TDateTime; NumberOfMonths:
Integer = 1):TDateTime;

Add 1 to month

19 function IsLeapYear(Year: Word):Boolean;

Determine if year is leap year

20 function MSecsToTimeStamp(MSecs: Comp):TTimeStamp;

Convert number of milliseconds to timestamp

21 function Now: TDateTime;

Get current date and time

22 function StrToDateTime(const S:):TDateTime;

Convert string to DateTime

23 function StrToDateTime(const s: ShortString; const FormatSettings:

TFormatSettings):TDateTime;

Convert string to DateTime

24 function StrToDateTime(const s: AnsiString; const FormatSettings:
TFormatSettings):TDateTime;

Convert string to DateTime

25 function StrToDate(const S: ShortString):TDateTime;

Convert string to date

26 function StrToDate(const S: Ansistring):TDateTime;

TUTORIALS POINT

Simply Easy Learning Page 139

Convert string to date

27 function StrToDate(const S: ShortString; separator: Char):TDateTime;

Convert string to date

28 function StrToDate(const S: AnsiString; separator: Char):TDateTime;

Convert string to date

29 function StrToDate(const S: ShortString; const useformat: ; separator:
Char):TDateTime;

Convert string to date

30 function StrToDate(const S: AnsiString; const useformat: ; separator:
Char):TDateTime;

Convert string to date

31 function StrToDate(const S: PChar; Len: Integer; const useformat: ;
separator: Char = #0):TDateTime;

Convert string to date

32 function StrToTime(const S: Shortstring):TDateTime;

Convert string to time

33 function StrToTime(const S: Ansistring):TDateTime;

Convert string to time

34 function StrToTime(const S: ShortString; separator: Char):TDateTime;

Convert string to time

35 function StrToTime(const S: AnsiString; separator: Char):TDateTime;

Convert string to time

36 function StrToTime(const S: ; FormatSettings: TFormatSettings
):TDateTime;

Convert string to time

37 function StrToTime(const S: PChar; Len: Integer; separator: Char = #0
):TDateTime;

Convert string to time

38 function SystemTimeToDateTime(const SystemTime: TSystemTime
):TDateTime;

Convert system time to datetime

TUTORIALS POINT

Simply Easy Learning Page 140

The following example illustrates the use of some of the above functions:

39 function TimeStampToDateTime(const TimeStamp: TTimeStamp
):TDateTime;

Convert time stamp to DateTime

40 function TimeStampToMSecs(const TimeStamp: TTimeStamp):comp;

Convert Timestamp to number of milliseconds

41 function TimeToStr(Time: TDateTime):;

Return string representation of Time

42 function TimeToStr(Time: TDateTime; const FormatSettings:
TFormatSettings):;

Return string representation of Time

43 function Time: TDateTime;

Get current time

Program DatenTimeDemo;
uses sysutils;
var

year, month, day, hr, min, sec, ms: Word;

begin
 writeln ('Date and Time at the time of writing : ',DateTimeToStr(Now));
 writeln('Today is ',LongDayNames[DayOfWeek(Date)]);
 writeln;
 writeln('Details of Date: ');

 DecodeDate(Date,year,month,day);
 writeln (Format ('Day: %d',[day]));
 writeln (Format ('Month: %d',[month]));
 writeln (Format ('Year: %d',[year]));
 writeln;
 writeln('Details of Time: ');
 DecodeTime(Time,hr, min, sec, ms);

 writeln (format('Hour: %d:',[hr]));
 writeln (format('Minutes: %d:',[min]));
 writeln (format('Seconds: %d:',[sec]));

 writeln (format('Milliseconds: %d:',[hr]));
end.

TUTORIALS POINT

Simply Easy Learning Page 141

When the above code was compiled and executed, it produced following result:

Date and Time at the time of writing : 7/24/2012 8:26:

Today is Tuesday
Details of Date:
Day:24
Month:7
Year: 2012
Details of Time:

Hour: 8
Minutes: 26
Seconds: 21
Milliseconds: 8

TUTORIALS POINT

Simply Easy Learning Page 142

Objects

This section shows the concept of Objects under Object Oriented Pascal:

W e can imagine our universe made of different objects like sun, earth, moon

etc. Similarly we can imagine our car made of different objects like wheel, steering, gear
etc. Same way there is object oriented programming concepts which assume everything
as an object and implement a software using different objects. In Pascal, there are two
structural data types used to implement a real world object:

 Object types
 Class types

Object Oriented Concepts:

Before we go in detail, let's define important Pascal terms related to Object Oriented
Pascal.

 Object: An Object is a special kind of record that contains fields like a record;
however unlike records objects contain procedures and functions as part of the
object. These procedures and functions are held as pointers to the methods
associated with the object's type.

 Class: A Class is defined in almost the same way as an Object, but there is a
difference in way they are created. The Class is allocated on the Heap of a
program, whereas the Object is allocated on the Stack. It is a pointer to the
object, not the object itself.

 Instantiation of a class: Instantiation means creating a variable of that class

type. Since a class is just a pointer, when a variable of a class type is declared,
there is memory allocated only for the pointer, not for the entire object.Only when
it is instantiated using one of its constructors, memory is allocated for the object.
Instances of a class are also called 'objects', but do not confuse them with Object
Pascal Objects. In this tutorial, we will write 'Object' for Pascal Objects and

'object' for the conceptual object or class instance.

 Member Variables: These are the variables defined inside a Class or an Object.

 Member Functions: These are the functions or procedures defined inside a Class

or an Object and are used to access object data.

CHAPTER

25

TUTORIALS POINT

Simply Easy Learning Page 143

 Visibility of Members: The members of an Object or Class are also called the

fields. These fields have different visibilities. Visibility refers to accessibility of the
members, i.e., exactly where these members will be accessible. Objects have
three visibility levels: public, private and protected. Classes have five visibility
types: public, private, strictly private, protected and published. We will discuss
visibility in details.

 Inheritance: When a Class is defined by inheriting existing functionalities of a

parent Class then it is said to be inherited. Here child class will inherit all or few
member functions and variables of a parent class. Objects can also be inherited.

 Parent Class: A Class that is inherited by another Class. This is also called a

base class or super class.

 Child Class: A class that inherits from another class. This is also called a subclass
or derived class.

 Polymorphism: This is an object oriented concept where same function can be

used for different purposes. For example function name will remain same but it
may take different number of arguments and can do different task. Pascal classes
implement polymorphism. Objects do not implement polymorphism.

 Overloading: It is a type of polymorphism in which some or all of operators have

different implementations depending on the types of their arguments. Similarly
functions can also be overloaded with different implementation. Pascal classes
implements overloading, but the Objects do not.

 Data Abstraction: Any representation of data in which the implementation

details are hidden (abstracted).

 Encapsulation: refers to a concept where we encapsulate all the data and

member functions together to form an object.

 Constructor: refers to a special type of function which will be called
automatically whenever there is an object formation from a class or an Object.

 Destructor: refers to a special type of function which will be called automatically
whenever an Object or Class is deleted or goes out of scope.

Defining Pascal Objects

An object is declared using the type declaration. The general form of an object declaration
is as follows:

Let us define a Rectangle Object that has two integer type data members - length and
width and some member functions to manipulate these data members and a procedure to
draw the rectangle.

type object-identifier = object

 private
 field1 : field-type;
 field2 : field-type;
 ...
 public
 procedure proc1;

 function f1(): function-type;

 end;
var objectvar : object-identifier;

TUTORIALS POINT

Simply Easy Learning Page 144

After creating your objects, you will be able to call member functions related to that

object. One member function will be able to process member variable of related object
only.

Following example shows how to set lengths and widths for two rectangle objects and
draw them by calling the member functions.

Following is a complete example to show how to use objects in Pascal:

type
 Rectangle = object
 private
 length, width: integer;
 public
 constructor init;

 destructor done;
 procedure setlength(l: inteter);
 function getlength(): integer;
 procedure setwidth(w: integer);
 function getwidth(): integer;
 procedure draw;
end;

var

 r1: Rectangle;
 pr1: ^Rectangle;

r1.setlength(3);

r1.setwidth(7);
writeln(' Draw a rectangle: ', r1.getlength(), ' by ' , r1.getwidth());
r1.draw;

new(pr1);
pr1^.setlength(5);
pr1^.setwidth(4);
writeln(' Draw a rectangle: ', pr1^.getlength(), ' by ' ,pr1^.getwidth());

pr1^.draw;
dispose(pr1);

program exObjects;
type

 Rectangle = object
 private
 length, width: integer;
 public

 procedure setlength(l: integer);
 function getlength(): integer;
 procedure setwidth(w: integer);

 function getwidth(): integer;
 procedure draw;
end;

TUTORIALS POINT

Simply Easy Learning Page 145

var
 r1: Rectangle;
 pr1: ^Rectangle;
procedure Rectangle.setlength(l: integer);

begin
 length := l;
end;

procedure Rectangle.setwidth(w: integer);
begin
 width :=w;

end;

function Rectangle.getlength(): integer;

begin
 getlength := length;
end;

function Rectangle.getwidth(): integer;
begin
 getwidth := width;
end;

procedure Rectangle.draw;

var
 i, j: integer;
begin
 for i:= 1 to length do
 begin
 for j:= 1 to width do

 write(' * ');

 writeln;
 end;
end;

begin
 r1.setlength(3);

 r1.setwidth(7);
 writeln('Draw a rectangle:', r1.getlength(), ' by ' , r1.getwidth());
 r1.draw;
 new(pr1);
 pr1^.setlength(5);
 pr1^.setwidth(4);
 writeln('Draw a rectangle:', pr1^.getlength(), ' by ' ,pr1^.getwidth());

 pr1^.draw;
 dispose(pr1);

end.

TUTORIALS POINT

Simply Easy Learning Page 146

When the above code is compiled and executed, it produces following result:

Visibility of the Object Members

Visibility indicates the accessibility of the object members. Pascal object members have three
types of visibility:

Visibility Accessibility

Public The members can be used by other units outside the program unit

Private The members are only accessible in the current unit.

Protected The members are available only to objects descended from the parent
object.

By default, fields and methods of an object are public, and are exported outside the current
unit.

Constructors and Destructors for Pascal Objects:

Constructors are special type of methods which are called automatically whenever an

object is created. You create a constructor in Pascal just by declaring a method with a
keyword constructor. Conventionally the method name is Init, however, you can provide
any valid identifier of your own. You can pass as many as arguments you like into the
constructor function.

Destructors are methods that called during the destruction of the object. The destructor
methods destroy any memory allocation created by constructors.

Following example will provide a constructor and a destructor for the Rectangle class
which will initialize length and width for the rectangle at the time of object creation and
destroy it when it goes out of scope.

Draw a rectangle: 3 by 7

* * * * * * *
* * * * * * *
* * * * * * *
Draw a rectangle: 5 by 4
* * * *
* * * *
* * * *

* * * *
* * * *

TUTORIALS POINT

Simply Easy Learning Page 147

program exObjects;
type
 Rectangle = object

 private
 length, width: integer;
 public
 constructor init(l, w: integer);
 destructor done;
 procedure setlength(l: integer);
 function getlength(): integer;

 procedure setwidth(w: integer);
 function getwidth(): integer;
 procedure draw;
end;

var
 r1: Rectangle;
 pr1: ^Rectangle;

constructor Rectangle.init(l, w: integer);
begin
 length := l;
 width := w;
end;

destructor Rectangle.done;
begin
 writeln(' Desctructor Called');
end;

procedure Rectangle.setlength(l: integer);

begin

 length := l;
end;

procedure Rectangle.setwidth(w: integer);
begin
 width :=w;
end;

function Rectangle.getlength(): integer;
begin
 getlength := length;
end;

function Rectangle.getwidth(): integer;
begin

 getwidth := width;
end;

procedure Rectangle.draw;
var

 i, j: integer;
begin
 for i:= 1 to length do
 begin
 for j:= 1 to width do
 write(' * ');
 writeln;

 end;
end;

TUTORIALS POINT

Simply Easy Learning Page 148

When the above code is compiled and executed, it produces following result:

Inheritance for Pascal Objects:

Pascal objects can optionally inherit from a parent object. The following program illustrates
inheritance in Pascal Objects. Let us create another object named TableTop, which is inheriting
from the Rectangle object.

begin
 r1.init(3, 7);
 writeln('Draw a rectangle:', r1.getlength(), ' by ' , r1.getwidth());

 r1.draw;
 new(pr1, init(5, 4));
 writeln('Draw a rectangle:', pr1^.getlength(), ' by ',pr1^.getwidth());
 pr1^.draw;
 pr1^.init(7, 9);
 writeln('Draw a rectangle:', pr1^.getlength(), ' by ' ,pr1^.getwidth());

 pr1^.draw;
 dispose(pr1);
 r1.done;
end.

Draw a rectangle: 3 by 7

* * * * * * *
* * * * * * *
* * * * * * *
Draw a rectangle: 5 by 4
* * * *
* * * *

* * * *
* * * *
* * * *
Draw a rectangle: 7 by 9

* * * * * * * * *
* * * * * * * * *
* * * * * * * * *

* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
* * * * * * * * *
Destructor Called

TUTORIALS POINT

Simply Easy Learning Page 149

program exObjects;
type
 Rectangle = object
 private
 length, width: integer;
 public

 procedure setlength(l: integer);
 function getlength(): integer;
 procedure setwidth(w: integer);
 function getwidth(): integer;
 procedure draw;
end;
TableTop = object (Rectangle)

 private
 material: string;

 public
 function getmaterial(): string;
 procedure setmaterial(m: string);
 procedure displaydetails;

 procedure draw;
end;
var
 tt1: TableTop;

procedure Rectangle.setlength(l: integer);
begin

 length := l;
end;

procedure Rectangle.setwidth(w: integer);

begin
 width :=w;
end;

function Rectangle.getlength(): integer;
begin
 getlength := length;
end;
function Rectangle.getwidth():integer;

begin
 getwidth := width;
end;
procedure Rectangle.draw;
var
 i, j: integer;
begin

 for i:= 1 to length do
 begin
 for j:= 1 to width do
 write(' * ');
 writeln;
 end;
end;

TUTORIALS POINT

Simply Easy Learning Page 150

Following are the important points which should be noted dows:

 The object Tabletop has inherited all the members of the Rectangle object.

 There is a draw method in TableTop also. When the draw method is called using a

TableTop object, TableTop's draw gets invoked.

 There is an implicit instance named self that refers to the current instance of the
object

function TableTop.getmaterial(): string;

begin
 getmaterial := material;
end;

procedure TableTop.setmaterial(m: string);
begin
 material := m;

end;

procedure TableTop.displaydetails;
begin
 writeln('Table Top: ', self.getlength(), ' by ' , self.getwidth());
 writeln('Material: ', self.getmaterial());

end;

procedure TableTop.draw();
var
 i, j: integer;
begin
 for i:= 1 to length do

 begin
 for j:= 1 to width do
 write(' * ');
 writeln;
 end;
 writeln('Material: ', material);
end;

begin

 tt1.setlength(3);
 tt1.setwidth(7);
 tt1.setmaterial('Wood');
 tt1.displaydetails();

 writeln;
 writeln('Calling the Draw method');
 tt1.draw();
end.

TUTORIALS POINT

Simply Easy Learning Page 151

When the above code is compiled and executed, it produces following result:

Table Top: 3 by 7
Material: Wood

Calling the Draw Method
* * * * * * *
* * * * * * *

* * * * * * *
Material: Wood

TUTORIALS POINT

Simply Easy Learning Page 152

Classes

This section shows the classes under Pascal programming languages:

Y ou have seen that Pascal Objects exhibit some characteristics of object oriented

paradigm. They implement encapsulation, data hiding and inheritance, but they also have
limitations. For example, Pascal Objects do not take part in polymorphism. So classes are
widely used to implement proper object oriented behavior in a program, especially the
GUI based software.

A Class is defined in almost the same way as an Object, but is a pointer to an Object
rather than the Object itself. Technically, this means that the Class is allocated on the
Heap of a program, whereas the Object is allocated on the Stack. In other words, when

you declare a variable the object type, it will take up as much space on the stack as the
size of the object, but when you declare a variable of the class type, it will always take the
size of a pointer on the stack. The actual class data will be on the heap.

Defining Pascal Classes:

A class is declared in the same way as an object, using the type declaration. The general
form of a class declaration is as follows:

CHAPTER

26

type class-identifier = class
 private
 field1 : field-type;
 field2 : field-type;

 ...
 public

 constructor create();
 procedure proc1;
 function f1(): function-type;
end;
var classvar : class-identifier;

TUTORIALS POINT

Simply Easy Learning Page 153

It’s worth to note following important points:

 Class definitions should come under the type declaration part of the program only.

 A class is defined using the class keyword.

 Fields are data items that exist in each instance of the class.

 Methods are declared within the definition of a class.

 There is a predefined constructor called Create in the Root class. Every abstract

class and every concrete class is a descendant of Root, so all classes have at least
one constructor.

 There is a predefined destructor called Destroy in the Root class. Every abstract

class and every concrete class is a descendant of Root, so, all classes have at
least one destructor.

Let us define a Rectangle class that has two integer type data members - length and width
and some member functions to manipulate these data members and a procedure to draw
the rectangle.

Let us write a complete program that would create an instance of a rectangle class and

draw the rectangle. This is the same example we used while discussing Pascal Objects.
You will find both programs are almost same, with the following exceptions:

 You will need to include the {$mode objfpc} directive for using the classes.
 You will need to include the {$m+} directive for using constructors
 Class instantiation is different than object instantiation. Only declaring the

variable does not create space for the instance, you will use the constructor
create to allocate memory.

Here is the complete example:

type
 Rectangle = class
 private
 length, width: integer;
 public

 constructor create(l, w: integer);
 procedure setlength(l: integer);
 function getlength(): integer;
 procedure setwidth(w: integer);
 function getwidth(): integer;
 procedure draw;
end;

TUTORIALS POINT

Simply Easy Learning Page 154

{$mode objfpc} // directive to be used for defining classes
{$m+} // directive to be used for using constructor

program exClass;
type
 Rectangle = class
 private
 length, width: integer;
 public

 constructor create(l, w: integer);
 procedure setlength(l: integer);
 function getlength(): integer;
 procedure setwidth(w: integer);
 function getwidth(): integer;

 procedure draw;
end;

var
 r1: Rectangle;
constructor Rectangle.create(l, w: integer);
begin
 length := l;
 width := w;
end;

procedure Rectangle.setlength(l: integer);
begin
 length := l;
end;

procedure Rectangle.setwidth(w: integer);

begin
 width :=w;
end;
function Rectangle.getlength(): integer;
begin
 getlength := length;

end;

function Rectangle.getwidth(): integer;
begin
 getwidth := width;
end;
procedure Rectangle.draw;

var
 i, j: integer;

begin
 for i:= 1 to length do
 begin
 for j:= 1 to width do

 write(' * ');
 writeln;
 end;
end;

TUTORIALS POINT

Simply Easy Learning Page 155

When the above code is compiled and executed, it produces following result:

Visibility of the Class Members

Visibility indicates the accessibility of the class members. Pascal class members have five
types of visibility:

Visibility Accessibility

Public These members are always accessible.

Private These members can only be accessed in the module or unit that
contains the class definition. They can be accessed from inside the
class methods or from outside them.

Strict Private These members can only be accessed from methods of the class itself.
Other classes or descendent classes in the same unit cannot access
them.

Protected This is same as private, except, these members are accessible to
descendent types, even if they are implemented in other modules.

Published This is same as a Public, but the compiler generates type information
that is needed for automatic streaming of these classes if the compiler
is in the {$M+} state. Fields defined in a published section must be of
class type.

begin
 r1:= Rectangle.create(3, 7);
 writeln(' Darw Rectangle: ', r1.getlength(), ' by ' , r1.getwidth());

 r1.draw;
 r1.setlength(4);
 r1.setwidth(6);
 writeln(' Darw Rectangle: ', r1.getlength(), ' by ' , r1.getwidth());
 r1.draw;
end.

Darw Rectangle: 3 by 7

* * * * * * *
* * * * * * *
* * * * * * *

Darw Rectangle: 4 by 6
* * * * * *
* * * * * *
* * * * * *
* * * * * *

TUTORIALS POINT

Simply Easy Learning Page 156

Constructors and Destructors for Pascal Classes:

Constructors are special methods which are called automatically whenever an object is

created. So we take full advantage of this behavior, by initializing many things through
constructor functions.

Pascal provides a special function called create() to define a constructor. You can pass as
many as arguments you like into the constructor function.

Following example will create one constructor for a class named Books and it will initialize
price and title for the book at the time of object creation.

program classExample;

{$MODE OBJFPC} //directive to be used for creating classes

{$M+} //directive that allows class constructors and destructors
type
 Books = Class
 private
 title : String;
 price: real;

 public
 constructor Create(t : String; p: real); //default constructor
 procedure setTitle(t : String); //sets title for a book
 function getTitle() : String; //retrieves title
 procedure setPrice(p : real); //sets price for a book
 function getPrice() : real; //retrieves price
 procedure Display(); // display details of a book

end;

var
 physics, chemistry, maths: Books;

//default constructor
constructor Books.Create(t : String; p: real);
begin

 title := t;
 price := p;
end;

procedure Books.setTitle(t : String); //sets title for a book
begin

 title := t;
end;

function Books.getTitle() : String; //retrieves title
begin
 getTitle := title;
end;

procedure Books.setPrice(p : real); //sets price for a book
begin
 price := p;
end;

TUTORIALS POINT

Simply Easy Learning Page 157

When the above code is compiled and executed, it produces following result:

Like the implicit constructor named create, there is also an implicit destructor method
destroy, using which you can release all the resources used in the class.

Inheritance:

Pascal class definitions can optionally inherit from a parent class definition. The syntax is

as follows:

Following example provides a novels class, which inherits the Books class and adds more
functionality based on the requirement.

function Books.getPrice() : real; //retrieves price

begin
 getPrice:= price;
end;

procedure Books.Display();
begin
 writeln('Title: ', title);

 writeln('Price: ', price:5:2);
end;

begin
 physics := Books.Create('Physics for High School', 10);
 chemistry := Books.Create('Advanced Chemistry', 15);

 maths := Books.Create('Algebra', 7);
 physics.Display;
 chemistry.Display;
 maths.Display;
end.

Title: Physics for High School
Price: 10
Title: Advanced Chemistry
Price: 15

Title: Algebra
Price: 7

type
childClas-identifier = class(baseClass-identifier)
< members >

end;

TUTORIALS POINT

Simply Easy Learning Page 158

program inheritanceExample;

{$MODE OBJFPC} //directive to be used for creating classes

{$M+} //directive that allows class constructors and destructors

type
 Books = Class
 protected
 title : String;

 price: real;
 public
 constructor Create(t : String; p: real); //default constructor
 procedure setTitle(t : String); //sets title for a book
 function getTitle() : String; //retrieves title

 procedure setPrice(p : real); //sets price for a book
 function getPrice() : real; //retrieves price

 procedure Display(); virtual; // display details of a book
end;
(* Creating a derived class *)

type
 Novels = Class(Books)
 private

 author: String;
 public
 constructor Create(t: String); overload;
 constructor Create(a: String; t: String; p: real); overload;
 procedure setAuthor(a: String); // sets author for a book
 function getAuthor(): String; // retrieves author name

 procedure Display(); override;

end;
var
 n1, n2: Novels;
//default constructor
constructor Books.Create(t : String; p: real);
begin

 title := t;
 price := p;
end;

procedure Books.setTitle(t : String); //sets title for a book
begin
 title := t;

end;

function Books.getTitle() : String; //retrieves title

begin
 getTitle := title;
end;

procedure Books.setPrice(p : real); //sets price for a book
begin
 price := p;
end;

TUTORIALS POINT

Simply Easy Learning Page 159

function Books.getPrice() : real; //retrieves price
begin

 getPrice:= price;
end;

procedure Books.Display();
begin
 writeln('Title: ', title);

 writeln('Price: ', price);
end;

(* Now the derived class methods *)
constructor Novels.Create(t: String);

begin
 inherited Create(t, 0.0);

 author:= ' ';
end;

constructor Novels.Create(a: String; t: String; p: real);
begin
 inherited Create(t, p);
 author:= a;

end;

procedure Novels.setAuthor(a : String); //sets author for a book
begin
 author := a;
end;

function Novels.getAuthor() : String; //retrieves author
begin
 getAuthor := author;
end;

procedure Novels.Display();

begin
 writeln('Title: ', title);
 writeln('Price: ', price:5:2);
 writeln('Author: ', author);
end;
begin
 n1 := Novels.Create('Gone with the Wind');

 n2 := Novels.Create('Ayn Rand','Atlas Shrugged', 467.75);
 n1.setAuthor('Margaret Mitchell');

 n1.setPrice(375.99);
 n1.Display;
 n2.Display;
end.

TUTORIALS POINT

Simply Easy Learning Page 160

When the above code is compiled and executed, it produces following result:

It’s worth to note following important points:

 The members of the Books class have protected visibility.

 The Novels class has two constructors, so the overload operator is used for

function overloading.

 The Books.Display procedure has been declared virtual, so that the same method

from the Novels class can override it.

 The Novels.Create contructor calls the base class constructor using the inherited

keyword.

Interfaces:

Interfaces are defined to provide a common function names to the implementers. Different
implementers can implement those interfaces according to their requirements. You can say,
interfaces are skeletons which are implemented by developers. Following is an example of
interface:

Please note that, when a class implements an interface, it should implement all methods of
the interface. If a method of an interface is not implemented, then the compiler will give an

error.

Abstract Classes:

An abstract class is one that cannot be instantiated, only inherited. An abstract class is
specified by including the word symbol abstract in the class definition, like this:

Title: Gone with the Wind
Price: 375.99
Author: Margaret Mitchell
Title: Atlas Shrugged
Price: 467.75
Author: Ayn Rand

type
 Mail = Interface
 Procedure SendMail;
 Procedure GetMail;

 end;
 Report = Class(TInterfacedObject, Mail)
 Procedure SendMail;
 Procedure GetMail;
 end;

type
 Shape = ABSTRACT CLASS (Root)
 Procedure draw; ABSTRACT;

 ...
 end;

TUTORIALS POINT

Simply Easy Learning Page 161

When inheriting from an abstract class, all methods marked abstract in the parent's class
declaration must be defined by the child; additionally, these methods must be defined with
the same visibility.

Static Keyword:

Declaring class members or methods as static makes them accessible without needing an
instantiation of the class. A member declared as static cannot be accessed with an instantiated
class object (though a static method can). The following example illustrates the concept:

When the above code is compiled and executed, it produces following result:

Please note that:

 In Pascal, all labels must be declared, before constant and variables declarations.

 The if and goto statements may be used in the compound statement to transfer
control out of the compound statement, but it is illegal to transfer control into a
compound statement.

{$mode objfpc}
{$static on}
type

 myclass=class
 num : integer;static;
 end;
var
 n1, n2 : myclass;
begin

 n1:= myclass.create;
 n2:= myclass.create;
 n1.num := 12;
 writeln(n2.num);
 n2.num := 31;
 writeln(n1.num);
 writeln(myclass.num);

 myclass.num := myclass.num + 20;
 writeln(n1.num);

 writeln(n2.num);
 end.

12
31
31
51

51

	Pascal Tutorial
	Audience
	Prerequisites
	Compile/Execute Pascal Programs
	Copyright & Disclaimer Notice
	Pascal Overview
	Features of the Pascal Language?
	Facts about Pascal
	Why to use Pascal?

	Environment
	Installing Free Pascal on Linux
	Installing Free Pascal on Mac
	Installing Free Pascal on Windows
	Text Editor

	Program Structure
	Pascal Hello World Example
	Compile and Execute Pascal Program:

	Basic Syntax
	Functions/Procedures
	Comments
	Case Sensitivity
	Pascal Statements
	Reserved Words in Pascal
	Character set and Identifiers in Pascal

	Data Types
	Pascal Data Types:
	Type Declarations:
	Integer Types
	Constants
	Enumerated types
	Subrange Types

	Variable Types
	Basic Variables in Pascal
	Variable Declaration in Pascal
	Variable Initialization in Pascal
	Enumerated Variables
	Subrange Variables

	Constants
	Declaring Constants

	Operators
	Arithmetic Operators
	Relational Operators
	Boolean Operators
	Bit Operators
	Operators Precedence in Pascal

	Decision Making
	Syntax:
	Flow Diagram:
	Example:
	The if-then-else if-then-else Statement
	Syntax:
	Syntax:
	Example:
	Syntax:
	Flow Diagram:
	Example:
	Syntax:
	Flow Diagram:
	Example:
	Syntax:
	Example:

	Loops
	while-do loop
	Syntax:
	Flow Diagram:
	Example:
	For-do LOOP
	Syntax:
	Example:
	Repeat-Until Loop
	Syntax:
	For example,
	Flow Diagram:
	Example:
	Example:
	Loop Control Statements:
	Syntax:
	Flow Diagram:
	Example:
	Syntax:
	Flow Diagram:
	Example:
	Syntax:
	Flow Diagram:
	Example:

	Functions
	Subprograms
	Functions
	Defining a Function:
	Function Declarations:

	Procedure
	Defining a Procedure:
	Procedure Declarations:
	Calling a Procedure:
	Recursive Subprograms
	Arguments of a Subprogram:

	Variable Scope
	Local Variables
	Global Variables

	Strings
	Examples
	Pascal String Functions and Procedures

	Boolean
	Declaration of Boolean Data Types
	Example:

	Arrays
	Declaring Arrays
	Types of Array Subscript
	Initializing Arrays
	Accessing Array Elements
	Pascal Arrays in Detail
	Two-Dimensional Arrays:
	Initializing Two-Dimensional Arrays:
	Accessing Two-Dimensional Array Elements:
	Declaring Dynamic Arrays
	Declaring Packed Arrays

	Pointers
	What Are Pointers?
	Printing a Memory Address in Pascal
	NILL Pointers
	Pascal Pointers in Detail:
	Incrementing a Pointer
	Decrementing a Pointer
	Pointer Comparisons

	Records
	Defining a Record
	Accessing Fields of a Record
	Records as Subprogram Arguments
	Pointers to Records
	The With Statement

	Variants
	Declaring a Variant
	Example:

	Sets
	Defining Set Types and Variables
	Set Operators
	Example:

	File Handling
	Creating and Writing to a File
	Reading from a File
	Files as Subprogram Parameter
	Text Files
	Appending to a File
	File Handling Functions

	Memory Management
	Allocating Memory Dynamically
	Resizing and Releasing Memory
	Memory Management Functions

	Units
	Using Built-in Units
	Creating and Using a Pascal Unit

	Date Time
	Getting the Current Date & Time:
	Various Date & Time Functions:

	Objects
	Object Oriented Concepts:
	Defining Pascal Objects
	Visibility of the Object Members
	Constructors and Destructors for Pascal Objects:
	Inheritance for Pascal Objects:

	Classes
	Defining Pascal Classes:
	Visibility of the Class Members
	Constructors and Destructors for Pascal Classes:
	Inheritance:
	Interfaces:
	Abstract Classes:
	Static Keyword:

